
Package ‘famTEMsel’
February 5, 2020

Type Package

Title Functional Additive Models for Treatment Effect-Modifier
Selection

Version 0.1.0

Author Park, H., Petkova, E., Tarpey, T., Ogden, R.T.

Maintainer Hyung Park <parkh15@nyu.edu>

Description
An implementation of a functional additive regression model which is uniquely modified and con-
strained to model nonlinear interaction effects between a categorical treatment variable and a po-
tentially large number of functional/scalar pretreatment covariates on their effects on a scalar-
valued outcome. The model generalizes functional additive models by incorporating treatment-
specific components into additive effect components, however, a structural constraint is im-
posed on the treatment-specific components, to give a class of orthogonal main and interac-
tion effect additive models. If primary interest is in interactions, one can avoid estimat-
ing main effects, obviating the need to specify their form and thereby avoiding the is-
sue of model misspecification. Utilizing this orthogonality, one can effectively conduct treat-
ment effect-modifier variable selection. The selected covariates can be used to make individual-
ized treatment recommendations. We refer to Park, Petkova, Tarpey, and Og-
den (2020) <doi:10.1016/j.jspi.2019.05.008> and Park, Petkova, Tarpey, and Og-
den (2020) ``Constrained functional additive models for estimating interactions between a treat-
ment and functional covariates'' (pre-print) for detail of the method. The main func-
tion of this package is famTEMsel().

License GPL-3

Imports samTEMsel, mgcv, SAM, stats, splines, graphics

Remotes syhyunpark/samTEMsel

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

RemoteType github

RemoteHost api.github.com

RemoteRepo famTEMsel

RemoteUsername syhyunpark

RemoteRef master

RemoteSha b371f2d741f025cc9c2d6551401583059909aa2e

1

2 cv.famTEMsel

GithubRepo famTEMsel

GithubUsername syhyunpark

GithubRef master

GithubSHA1 b371f2d741f025cc9c2d6551401583059909aa2e

NeedsCompilation no

R topics documented:
cv.famTEMsel . 2
famTEMsel . 6
make_ITR_famTEMsel . 10
plot_famTEMsel . 11
predict_famTEMsel . 12

Index 14

cv.famTEMsel Functional Additive Models for Treatment Effect-Modifier Selection
(cross-validation function)

Description

Does k-fold cross-validation for famTEMsel, selects an optimal regularization parameter index,
lambda.opt.index, and returns the estimated constrained functional additive model given the op-
timal regularization parameter index lambda.opt.index.

Usage

cv.famTEMsel(y, A, X, Z = NULL, mu.hat = NULL, n.folds = 5, d = 3,
k = 6, bs = "ps", sp = NULL, lambda.opt.index = NULL,
lambda = NULL, nlambda = 30, lambda.min.ratio = 0.01,
lambda.index.grid = 1:floor(nlambda/3), cv1sd = FALSE,
thol = 1e-05, max.ite = 1e+05, regfunc = "L1", max.iter = 10,
eps.iter = 0.01, eps.num.deriv = 1e-04, trace.iter = TRUE,
plots = TRUE)

Arguments

y a n-by-1 vector of responses

A a n-by-1 vector of treatment variable; each element represents one of the L(>1)
treatment conditions; e.g., c(1,2,1,1,3...); can be a factor-valued

X a length-p list of functional-valued covariates, with its jth element correspond-
ing to a n-by-n.eval[j] matrix of the observed jth functional covariates; n.eval[j]
represents the number of evaluation points of the jth functional covariates

Z a n-by-q matrix of scalar-valued covaraites

mu.hat a n-by-1 vector of the fitted (X,Z)-main effect term of the model provided by the
user; defult is NULL, in which case mu.hat is taken to be a vector of zeros; the
optimal choice for this vector is E(y|X,Z)

n.folds number of folds for cross-validation; the default is 5.

cv.famTEMsel 3

d number of basis spline functions to be used for each component function; the
default value is 3; d=1 corresponds to the linear model

k dimension of the basis for representing each single-index coefficient function;
see mgcv::gam for detail; the default value is 6.

bs type of basis for representing the single-index coefficient functions; the defult
is "ps" (p-splines); any basis supported by mgcv::gam can be used, e.g., "cr"
(cubic regression splines).

sp smoothing parameter associated with the single-index coefficient function; the
default is NULL, in which case the smoothing parameter is estimated based on
generalized cross-validation.

lambda.opt.index

a user-supplied optimal regularization parameter index to be used; the default is
NULL, in which case n.folds cross-validation is performed to select an optimal
index.

lambda a user-supplied regularization parameter sequence; typical usage is to have the
program compute its own lambda sequence based on nlambda and lambda.min.ratio.

nlambda total number of lambda values; the default value is 30.

lambda.min.ratio

the smallest value for lambda, as a fraction of lambda.max, the (data derived)
entry value (i.e. the smallest value for which all coefficients are zero); the default
is 1e-2.

lambda.index.grid

a set of indices of lambda, in which the search for an optimal regularization
parameter is to be conducted.

cv1sd if TRUE, an optimal regularization parameter is chosen based on: the mean cross-
validated error + 1 SD of the mean cross-validated error, which typically results
in an increase in regularization; the defualt is FALSE.

thol stopping precision for the coordinate-descent algorithm; the default value is 1e-
5.

max.ite number of maximum iterations for the coordinate-descent procedure used in
estimating the component functions; the default value is 1e+5.

regfunc type of the regularizer for variable selection; the default is "L1"; can also be
"MCP" or "SCAD".

max.iter number of maximum iterations for the iterative procedure used in estimating the
single-index coefficient functions; the default value is 1e+1.

eps.iter a value specifying the convergence criterion for the iterative procedure used in
estimating the single-index coefficient functions; the defult is 1e-2.

eps.num.deriv a small value that defines a finite difference used in computing the numerical
(1st) derivative of the estimated component function; the default is 1e-4.

trace.iter if TRUE, trace the estimation process by printing the difference in the estimated
single-index basis coefficients (as compared to the previous iteration), and the
functional norms of the estimated component functions, for each iteration.

plots if TRUE, produce a cross-validation plot of the estimated mean squared error
versus the regulariation parameter index.

4 cv.famTEMsel

Value

a list of information of the fitted constrained functional additive model including

famTEMsel.obj an object of class famTEMsel, which contains the sequence of the set of fitted
component functions samTEMsel.obj implied by the sequence of the regular-
ization parameters lambda and the corresponding set of fitted single-index coef-
ficient functions si.fit; see famTEMsel for detail.

lambda.opt.index

an index number, indicating the index of the estimated optimal regularization
parameter in lambda.

nonzero.index a set of numbers, indicating the indices of estimated nonzero component func-
tions, evalated at the regularization parameter index lambda.opt.index.

nonzero.X.index

a set of numbers, indicating the indices of estimated nonzero component func-
tions associated with the p functional covariates, evalated at the regularization
parameter index lambda.opt.index.

func_norm.opt a p-by-1 vector, indicating the norms of the estimated component functions eval-
uatd at the regularization parameter index lambda.opt.index, with each ele-
ment corresponding to the norm of each estimated component function.

cv.storage a n.folds-by-nlambda matrix of the estimated mean squared errors, with each
column corresponding to each of the regularization parameters in lambda and
each row corresponding to each of the n.folds folds.

mean.cv a nlambda-by-1 vector of the estimated mean squared errors, with each element
corresponding to each of the regularization parameters in lambda.

sd.cv a nlambda-by-1 vector of the standard deviation of the estimated mean squared
errors, with each element corresponding to each of the regularization parameters
in lambda.

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

famTEMsel, predict_famTEMsel, plot_famTEMsel

Examples

p = q = 10 # p and q are the numbers of functional and scalar pretreatment covariates, respectively.
n.train = 300 # training set sample size
n.test = 1000 # testing set sample size
n = n.train + n.test

generate p pretreatment functional covariates X by first seting up functional basis:
n.eval = 50; s = seq(0, 1, length.out = n.eval) # a grid of support points
b1 = sqrt(2)*sin(2*pi*s)
b2 = sqrt(2)*cos(2*pi*s)
b3 = sqrt(2)*sin(4*pi*s)
b4 = sqrt(2)*cos(4*pi*s)
B = cbind(b1, b2, b3, b4) # a (n.eval-by-4) basis matrix
randomly generate basis coefficients, and then add measurement noise

cv.famTEMsel 5

X = vector("list", length= p); for(j in 1:p){
X[[j]] = matrix(rnorm(n*4, 0, 1), n, 4) %*% t(B) +
matrix(rnorm(n*n.eval, 0, 0.25), n, n.eval) # measurement noise

}
Z = matrix(rnorm(n*q, 0, 1), n, q) # q scalar covariates
A = rbinom(n, 1, 0.5) + 1 # treatment variable taking a value in {1,2} with equal prob.

X main effect on y; depends on the first 5 covariates
the effect is generated randomly; randomly generated basis coefficients, scaled to unit L2 norm.
tmp = apply(matrix(rnorm(4*5), 4,5), 2, function(s) s/sqrt(sum(s^2)))
main.effect = rep(0, n); for(j in 1:5){
main.effect = main.effect + cos(X[[j]]%*% B %*%tmp[,j]/n.eval) # nonlinear effect (cosine)

}; rm(tmp)
Z main effect on y; also depends on first 5 covariates
for(k in 1:5){

main.effect = main.effect + cos(Z[,k])
}

define (interaction effect) coefficient functions associted with X[[1]] and X[[2]]
beta1 = B %*% c(0.5,0.5,0.5,0.5)
beta2 = B %*% c(0.5,-0.5,0.5,-0.5)
A-by-X ineraction effect on y; depends only on X[[1]] and X[[2]].
interaction.effect = (A-1.5)*(2*sin(X[[1]]%*%beta1/n.eval) + 2*sin(X[[2]]%*%beta2/n.eval))
A-by-Z ineraction effect on y; depends only on Z[,1] and Z[,2].
interaction.effect = interaction.effect + (A-1.5)*(Z[,1] + 2*sin(Z[,2]))

generate outcome y
noise = rnorm(n, 0, 0.5)
y = main.effect + interaction.effect + noise

var.main <- var(main.effect)
var.interaction <- var(interaction.effect)
var.noise <- var(noise)
SNR <- var.interaction/ (var.main + var.noise)
SNR # "signal-to-noise" ratio

train/test set splitting
train.index = 1:n.train
y.train = y[train.index]
X.train= X.test = vector("list", p); for(j in 1:p){
X.train[[j]] = X[[j]][train.index,]
X.test[[j]] = X[[j]][-train.index,]
}
A.train = A[train.index]
A.test = A[-train.index]
y.train = y[train.index]
y.test = y[-train.index]
Z.train = Z[train.index,]
Z.test = Z[-train.index,]

obtain an optimal regularization parameter and the corresponding model by running cv.famTEMsel().
cv.obj = cv.famTEMsel(y.train, A.train, X.train, Z.train)
lambda.opt.index = cv.obj$lambda.opt.index # optimal regularization parameter index
cv.obj$func_norm.opt # L2 norm of the component functions, associated with lambda.opt.index.
famTEMsel.obj = cv.obj$famTEMsel.obj # extract the fitted model associted with lambda.opt.index.

6 famTEMsel

see also, famTEMsel() for the detail of famTEMsel.obj.

famTEMsel.obj$nonzero.index # set of indices for the component functions estimated as nonzero
plot the component functions estimated as nonzero
plot_famTEMsel(famTEMsel.obj, which.index = famTEMsel.obj$nonzero.index)

make ITRs for subjects with pretreatment characteristics, X.test and Z.test
trt.rule = make_ITR_famTEMsel(famTEMsel.obj, newX = X.test, newZ = Z.test)$trt.rule
head(trt.rule)

an (IPWE) estimate of the "value" of this particualr treatment rule, trt.rule:
mean(y.test[A.test==trt.rule])

compare the above value to the following estimated "values" of "naive" treatment rules:
mean(y.test[A.test==1]) # a rule that assigns everyone to A=1
mean(y.test[A.test==2]) # a rule that assigns everyone to A=2

famTEMsel Functional Additive Models for Treatment Effect-Modifier Selection
(main function)

Description

The function famTEMsel implements estimation of a constrained functional additve model.

Usage

famTEMsel(y, A, X, Z = NULL, mu.hat = NULL, d = 3, k = 6,
bs = "ps", sp = NULL, lambda = NULL, nlambda = 30,
lambda.min.ratio = 0.01, lambda.index = floor(nlambda/3),
thol = 1e-05, max.ite = 1e+05, regfunc = "L1", eps.iter = 0.01,
max.iter = 10, eps.num.deriv = 1e-04, trace.iter = TRUE)

Arguments

y a n-by-1 vector of responses

A a n-by-1 vector of treatment variable; each element represents one of the L(>1)
treatment conditions; e.g., c(1,2,1,1,3...); can be a factor-valued

X a length-p list of functional-valued covariates, with its jth element correspond-
ing to a n-by-n.eval[j] matrix of the observed jth functional covariates; n.eval[j]
represents the number of evaluation points of the jth functional covariates

Z a n-by-q matrix of scalar-valued covaraites

mu.hat a n-by-1 vector of the fitted (X,Z)-main effect term of the model provided by the
user; defult is NULL, in which case mu.hat is taken to be a vector of zeros; the
optimal choice for this vector is E(y|X,Z)

d number of basis spline functions to be used for each component function; the
default value is 3; d=1 corresponds to the linear model

k number of basis spline functions to be used for each single-index coefficient
function associated with each functional covariate;

famTEMsel 7

bs type of basis for representing the single-index coefficient functions; the defult
is "ps" (p-splines); any basis supported by mgcv::gam can be used, e.g., "cr"
(cubic regression splines)

sp smoothing parameter associated with the single-index coefficient function; the
default is NULL, in which case the smoothing parameter is estimated based on
generalized cross-validation

lambda a user-supplied regularization parameter sequence; typical usage is to have the
program compute its own lambda sequence based on nlambda and lambda.min.ratio.

nlambda total number of lambda values; the default value is 30.
lambda.min.ratio

the smallest value for lambda, as a fraction of lambda.max, the (data derived)
entry value (i.e. the smallest value for which all coefficients are zero); the default
is 0.01.

lambda.index a user-supplied regularization parameter index to be used; the default is floor(nlambda/3).

thol stopping precision for the coordinate-descent algorithm; the default value is 1e-
5.

max.ite number of maximum iterations for the coordinate-descent procedure in fitting
the component functions; the default value is 1e+5.

regfunc type of the regularizer; the default is "L1"; can also be "MCP" or "SCAD".

eps.iter a value specifying the convergence criterion for the iterative procedure in fitting
the single-index coefficient functions; the defult is 1e-2.

max.iter number of maximum iterations for the iterative procedure in fitting the single-
index coefficient functions; the default value is 1e+1.

eps.num.deriv a small value used in the finite difference method for computing the numerical
(1st) derivatives of the estimated component functions; the default is 1e-4.

trace.iter if TRUE, trace the estimation process by printing, for each iteration, the difference
from the previous iteration in the estimated single-index basis coefficients and
the functional norms of the estimated component functions.

Details

A constrained functional model represents the joint effects of treatment, pretreatment p functional
covariates and q scalar covariates on an outcome variable via a sum of treatment-specific additive
flexible component functions defined over the (p + q) covariates, subject to the constraint that the
expected value of the outcome given the covariates equals zero, while leaving the main effects
of the covariates unspecified. The p pretreatment functional covariates appear in the model as 1-
dimensional projections, via inner products with corresponding single-index coefficient functions.
Under this model, the treatment-by-covariates interaction effects are determined by distinct shapes
(across treatment levels) of the treatment-specific flexible component functions. Optimized under
a penalized least square criterion with a L1 (or SCAD/MCP) penalty, the constrained functional
additive model can effectively identify/select treatment effect-modifiers (from the p functional and
q scalar covariates) that exhibit possibly nonlinear interactions with the treatment variable; this is
achieved by producing a sparse set of estimated component functions of the model. The estimated
nonzero component functions and single-index coefficient functions (available from the returned
famTEMsel object) can be used to make individualized treatment recommendations (ITRs) for future
subjects; see also make_ITR_famTEMsel for such ITRs.

The regularization path for the component functions is computed at a grid of values for the regular-
ization parameter lambda.

8 famTEMsel

Value

a list of information of the fitted constrained functional additive models including

samTEMsel.obj an object of class samTEMsel, which contains the sequence of the set of fitted
component functions implied by the sequence of the regularization parameters
lambda; the sparse additive models are fitted over the set of the p functional
covariates projected onto the estimated single-index coefficient functions (stored
in si.fit) and the set of q scalar covariates; the object samTEMsel.obj includes
the residuals of the fitted models and the fitted values for the response variable;
see samTEMsel::samTEMsel for detail of the samTEMsel object.

si.fit the length-p list of the single-index coefficient function estimate objects; each
element is a mgcv::gam object; the jth element corresponds to the estimated
single-index coefficient function associated with the jth functional covariate.

si.coef.path the length-p list, where the jth element is a (iter-by-k) matrix, with the lth row
corresponding to the basis coefficient vector estimate associated with the jth
single-index coefficient function at the lth iteration of the fitting procedure.

mean.fn the length-p list of mean functions (averaged across n observations), where the
jth element is a n.eval[j]-by-1 vector of the evaluation of the estimated mean of
the jth functional covariate.

n.eval a length-p vector, where its jth element represents the number of evaluation
points of the jth functional covariate.

func_norm.record

the iter-by-(p+q) matrix, with its lth row corresponding to the vector of the esti-
mated (p+q) component functions’ L2 norms at the lth iteration.

func_norm a length (p+q) vector of the estimated (p+q) component functions’ L2 norms, at
the final iteration.

lambda the sequence of regularization parameters used in the object samTEMsel.obj.

lambda.index an index number, indicating the index of the regularization parameter in lambda
used in obtaining the fitted model (including the single-index coefficient func-
tions).

nonzero.index a set of numbers, indicating the indices of estimated nonzero component func-
tions of this particular fit under the regularization parameter index lambda.index.

nonzero.X.index

a set of numbers, indicating the indices of estimated nonzero component func-
tions associated with the p functional covariates, based on this particular fit un-
der the regularization parameter index lambda.index.

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

cv.famTEMsel, predict_famTEMsel, plot_famTEMsel, make_ITR_famTEMsel

Examples

p = q = 10 # p and q are the numbers of functional and scalar pretreatment covariates, respectively.
n.train = 300 # training set sample size

famTEMsel 9

n.test = 1000 # testing set sample size
n = n.train + n.test

generate p pretreatment functional covariates X by first seting up functional basis:
n.eval = 50; s = seq(0, 1, length.out = n.eval) # a grid of support points
b1 = sqrt(2)*sin(2*pi*s)
b2 = sqrt(2)*cos(2*pi*s)
b3 = sqrt(2)*sin(4*pi*s)
b4 = sqrt(2)*cos(4*pi*s)
B = cbind(b1, b2, b3, b4) # a (n.eval-by-4) basis matrix
randomly generate basis coefficients, and then add measurement noise
X = vector("list", length= p); for(j in 1:p){

X[[j]] = matrix(rnorm(n*4, 0, 1), n, 4) %*% t(B) +
matrix(rnorm(n*n.eval, 0, 0.25), n, n.eval) # measurement noise

}
Z = matrix(rnorm(n*q, 0, 1), n, q) # q scalar covariates
A = rbinom(n, 1, 0.5) + 1 # treatment variable taking a value in {1,2} with equal prob.

X main effect on y; depends on the first 5 covariates
the effect is generated randomly; randomly generated basis coefficients, scaled to unit L2 norm.
tmp = apply(matrix(rnorm(4*5), 4,5), 2, function(s) s/sqrt(sum(s^2)))
main.effect = rep(0, n); for(j in 1:5){
main.effect = main.effect + cos(X[[j]]%*% B%*%tmp[,j]/n.eval) # nonlinear effect (cosine)

}; rm(tmp)
Z main effect on y; also depends on first 5 covariates
for(k in 1:5){

main.effect = main.effect + cos(Z[,k])
}

define (interaction effect) coefficient functions associted with X[[1]] and X[[2]]
beta1 = B %*% c(0.5,0.5,0.5,0.5)
beta2 = B %*% c(0.5,-0.5,0.5,-0.5)
A-by-X ineraction effect on y; depends only on X[[1]] and X[[2]].
interaction.effect = (A-1.5)*(2*sin(X[[1]]%*%beta1/n.eval) + 2*sin(X[[2]]%*%beta2/n.eval))
A-by-Z ineraction effect on y; depends only on Z[,1] and Z[,2].
interaction.effect = interaction.effect + (A-1.5)*(Z[,1] + 2*sin(Z[,2]))

generate outcome y
noise = rnorm(n, 0, 0.5)
y = main.effect + interaction.effect + noise

var.main <- var(main.effect)
var.interaction <- var(interaction.effect)
var.noise <- var(noise)
SNR <- var.interaction/ (var.main + var.noise)
SNR # "signal-to-noise" ratio

train/test set splitting
train.index = 1:n.train
y.train = y[train.index]
X.train= X.test = vector("list", p); for(j in 1:p){

X.train[[j]] = X[[j]][train.index,]
X.test[[j]] = X[[j]][-train.index,]

}
A.train = A[train.index]
A.test = A[-train.index]
y.train = y[train.index]

10 make_ITR_famTEMsel

y.test = y[-train.index]
Z.train = Z[train.index,]
Z.test = Z[-train.index,]

fit a model with some regularization parameter index, say, lambda.index = 10.
(an optimal regularization parameter can be estimated by running cv.famTEMsel().)
famTEMsel.obj = famTEMsel(y.train, A.train, X.train, Z.train, lambda.index=10)
famTEMsel.obj$func_norm # L2 norm of the estimated component functions of the model
famTEMsel.obj$nonzero.index # set of indices for the component functions estimated as nonzero
plot the component functions estimated as nonzero and the single-index functions
plot_famTEMsel(famTEMsel.obj, which.index = famTEMsel.obj$nonzero.index)

make ITRs for subjects with pretreatment characteristics, X.test and Z.test
trt.rule = make_ITR_famTEMsel(famTEMsel.obj, newX = X.test, newZ = Z.test)$trt.rule
head(trt.rule)

an (IPWE) estimate of the "value" of this particualr treatment rule, trt.rule:
mean(y.test[A.test==trt.rule])

compare the above value to the following estimated "values" of "naive" treatment rules:
mean(y.test[A.test==1]) # a rule that assigns everyone to A=1
mean(y.test[A.test==2]) # a rule that assigns everyone to A=2

make_ITR_famTEMsel make individualized treatment recommendations (ITRs) based on a
famTEMsel object

Description

The function make_ITR_famTEMsel returns individualized treatment decision recommendations for
subjects with pretreatment characteristics newX and newZ, given a famTEMsel object, famTEMsel.obj,
and an (optimal) regularization parameter index, lambda.index.

Usage

make_ITR_famTEMsel(famTEMsel.obj, newX = NULL, newZ = NULL,
lambda.index = NULL, maximize = TRUE)

Arguments

famTEMsel.obj a famTEMsel object, containing the fitted constrained functional additive mod-
els.

newX a length-p list of new values for the functional-valued covariates X, where the
jth element is a (n-by-n.eval[j]) matrix of the observed jth function, at which
predictions are to be made; if NULL, X from the training set is used.

newZ a (n-by-q) matrix of new values for the scalar-valued covariates Z at which pre-
dictions are to be made; if NULL, Z from the training set is used.

lambda.index an index of the regularization parameter lambda at which predictions are to be
made; one can supply lambda.opt.index obtained from the function cv.famTEMsel();
the default is NULL, in which case the predictions are made at the lambda.index
used in obtaining famTEMsel.obj.

plot_famTEMsel 11

maximize default is TRUE, assuming a larger value of the outcome is better; if FALSE, a
smaller value is assumed to be prefered.

Value

pred.new a (n-by-L) matrix of predicted values, with each column representing one of the
L treatment options.

trt.rule a (n-by-1) vector of the individualized treatment recommendations

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

famTEMsel,cv.famTEMsel, predict_famTEMsel

plot_famTEMsel plot component functions from a famTEMsel object

Description

Produces plots of the component functions and the single-index coefficient functions from a famTEMsel
object.

Usage

plot_famTEMsel(famTEMsel.obj, newX = NULL, newZ = NULL, newA = NULL,
scatter.plot = TRUE, lambda.index = famTEMsel.obj$lambda.index,
which.index = famTEMsel.obj$nonzero.index, ylims,
single.index.plot = TRUE, solution.path = FALSE)

Arguments

famTEMsel.obj a famTEMsel object

newX a (n by p) list of new values for the functional covariates X at which predictions
are to be made; the jth element of the list corresponds to a n-by-n.eval[j] ma-
trix of the observed jth functional covariates; n.eval[j] represents the number of
evaluation points of the jth functional covariates; if NULL, X from the training
set is used.

newZ a (n by q) matrix of new values for the scalar covariates Z at which predictions
are to be made; if NULL, Z from the training set is used.

newA a (n-by-1) vector of new values for the treatment A at which plots are to be
made; the default is NULL, in which case A is taken from the training set.

scatter.plot if TRUE, draw scatter plots of partial residuals versus the covariates; these scatter
plots are made based on the training observations; the default is TRUE.

lambda.index an index of the tuning parameter lambda at which plots are to be made; one
can supply lambda.opt.index obtained from the function cv.samTEMsel; the
default is NULL, in which case plot_samTEMsel utilizes the most non-sparse
model.

12 predict_famTEMsel

which.index this specifies which component functions are to be plotted; the default is all p
component functions, i.e., 1:p.

ylims this specifies the vertical range of the plots, e.g., c(-10, 10).
single.index.plot

if TRUE, draw the plots of the estimated single-index coefficient functions; the
default is TRUE.

solution.path if TRUE, draw the functional norms of the fitted component functions (based on
the training set) versus the regularization parameter; the default is FALSE.

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

famTEMsel,predict_famTEMsel, cv.famTEMsel

predict_famTEMsel famTEMsel prediction function

Description

predict_famTEMsel makes predictions given a (new) set of functional covariates newX, a (new)
set of scalar covariates newZ and a (new) vector of treatment indicators newA based on a con-
strained functional additive model famTEMsel.obj. Specifically, predict_famTEMsel predicts the
responses y based on the (X,Z)-by-A interaction effect (plus the A main effect) portion of the full
model that includes the unspecified X main effect term.

Usage

predict_famTEMsel(famTEMsel.obj, newX = NULL, newZ = NULL,
newA = NULL, type = "response", lambda.index = NULL)

Arguments

famTEMsel.obj a famTEMsel object

newX a (n by p) list of new values for the functional covariates X at which predictions
are to be made; the jth element of the list corresponds to a n-by-n.eval[j] ma-
trix of the observed jth functional covariates; n.eval[j] represents the number of
evaluation points of the jth functional covariates; if NULL, X from the training
set is used.

newZ a (n by q) matrix of new values for the scalar covariates Z at which predictions
are to be made; if NULL, Z from the training set is used.

newA a (n by 1) vector of new values for the treatment A at which predictions are to
be made; if NULL, A from the training set is used.

type the type of prediction required; the default "response" gives the predicted re-
sponses y based on the whole model; the alternative "terms" gives the component-
wise predicted responses from each of the p components (and plus the treatment-
specific intercepts) of the model.

predict_famTEMsel 13

lambda.index an index of the tuning parameter lambda at which predictions are to be made;
one can supply lambda.opt.index obtained from the function cv.samTEMsel;
the default is NULL, in which case the predictions based on the most non-sparse
model is returned.

Value

predicted a (n-by-length(lambda.index)) matrix of predicted values; a (n-by-length(lambda.index)*(p+q+1))
matrix of predicted values if type = "terms", where the last column corresponds
to the (treatment-specific) intercept.

U a n-by-(p+q) matrix of the index variables; the first p columns correspond to the
1-D projections of the p functional covariates and the last q columns correspond
to the q scalar covariates.

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

famTEMsel,cv.famTEMsel, plot_famTEMsel

Index

cv.famTEMsel, 2

famTEMsel, 2, 4, 6

make_ITR_famTEMsel, 10

plot_famTEMsel, 11
predict_famTEMsel, 12

14

	cv.famTEMsel
	famTEMsel
	make_ITR_famTEMsel
	plot_famTEMsel
	predict_famTEMsel
	Index

