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A Appendix

A.1 Proof of Theorem 2.1

Proof. Suppose there is a sufficient reduction RpXq “ B˚1X and the associated unspecified functions tgtutPT ,
i.e., assume representation (2.5) with B “ B˚. Let g˚t pB

˚1Xq :“ gtpB
˚1Xq ´ ErgT pB˚1Xq|Xs pt P T q, which,

by rearrangement, gives gtpB˚1Xq “ ErgT pB˚1Xq|Xs ` g˚t pB
˚1Xq pt P T q, where, by definition, the term

ErgT pB˚1Xq|Xs does not depend on T (as T is integrated out) and the term g˚t pB
˚1Xq pt P T q is designed to satisfy

(2.7). Thus, for any contrast vector c, we can rewrite (2.5) (withB “ B˚1) as
K
ÿ

t“1

ctgtpB
˚1Xq “

K
ÿ

t“1

ct
 

ErgT pB˚1Xq|Xs ` g˚t pB˚1Xq
(

“

K
ÿ

t“1

ctg
˚
t pB

˚1Xq,

where the second equality follows from
řK
t“1 ctErgT pB˚1Xq|Xs “ ErgT pB˚1Xq|Xs

řK
t“1 ct “ 0. Therefore, for

representation (2.5), we can always reparametrize the set of functions tgtutPT by tg˚t utPT that satisfies (2.7), implying
that we can assume gt “ g˚t , without loss of generality. By definition (2.4), we can re-express (2.5) (withB “ B˚) as

CpX; cq “
K
ÿ

t“1

ctE rY |X, T “ ts “
K
ÿ

t“1

ctg
˚
t pB

˚1Xq, (A.1)

for any contrast vector c. Under the general model (2.1), (A.1) indicates that theX-by-T interaction term gpX, T “ tq
pt P T q in (2.1) corresponds to the term g˚t pB

˚1Xq pt P T q in (A.1), since the second equation in (A.1) holds for any
arbitrary contrast c “ pc1, . . . , cKq. Furthermore, the term µpXq in (2.1) corresponds to µpXq of model (2.6), since
µpXq of model (2.6) represents the unspecified X marginal effect. Thus, under the general model (2.1), (2.5) with
B “ B˚ implies model (2.6).

Conversely, if we assume model (2.6), then, by definition (2.4) we have

CpX; cq “
K
ÿ

t“1

ctE rY |X, T “ ts “ 0 `
K
ÿ

t“1

ctg
˚
t pB

˚1Xq, (A.2)

for all contrast vectors c, where theX marginal effect µpXq in (2.6) drops out due to
řK
t“1 ct “ 0. Expression (A.2)

implies thatB˚1X is a sufficient reduction for CpX; cq, implying (2.5) withB “ B˚.

A.2 Proof of Corollary 2.1

Proof. By Theorem 2.1, RpXq “ B˚1X of model (2.6) is a sufficient reduction (2.5). We need to show that spanpB˚q
is a minimal reduction, and therefore spanpB˚q “ SC|X . Due to the constraint (2.7),B˚ of model (2.6) is not related
to theX marginal effect, therefore there is no “nuisance” dimension contained in spanpB˚q. Moreover, sinceB˚ P Θq ,
the columns ofB˚ are linearly independent. This impliesB˚ is a basis for SC|X .

A.3 Justification for excluding the main effect term in the optimization-based representation (2.8)

Under model (2.6) of the main manuscript, we can view the treatment t-specific functions tg˚t utPT and the dimension
reduction matrixB˚ as the solution to the following optimization:

pg˚1 , . . . , g
˚
K ,B

˚q “ argmin
gtPHpBq,BPΘq

E
“`

Y ´ µpXq ´ gT pB
1Xq

˘2‰

subject to E
“

gT pB
1Xq|X

‰

“ 0,

(A.3)

where µpXq is the fixed term given from the assumed model (2.6). However, in (A.3), we have

arg min
gtPHpBq,BPΘq

E
”

Y 2 ` pµpXqq2 `
`

gT pB
1Xq

˘2
´ 2µpXqY ´ 2gT pB

1XqY ` 2gT pB
1XqµpXq

ı

“ arg min
gtPHpBq,BPΘq

E
”

Y 2 `
`

gT pB
1Xq

˘2
´ 2gT pB

1XqY ` 2gT pB
1XqµpXq

ı

“ arg min
gtPHpBq,BPΘq

E
”

Y 2 `
`

gT pB
1Xq

˘2
´ 2gT pB

1XqY ` 2E
“

gT pB
1XqµpXq|X

‰

ı

“ arg min
gtPHpBq,BPΘq

E
”

Y 2 `
`

gT pB
1Xq

˘2
´ 2gT pB

1XqY
ı

,
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where the first equality follows from the fact that µpXq is not a component that we optimize over, the second equality
follows from an application of the iterated expectation rule to condition on X and the last equality follows from
the constraint E rgT pB1Xq|Xs “ 0 in (A.3). Therefore, representation (A.3) can be simplified to (2.8) of the main
manuscript, which does not involve the unspecified term µpXq of the underlying model.

A.4 Proof of Proposition 3.1

Proof. Note that ηt ´ η̄ P spanpΞq and hence pηt ´ η̄q1X is measurable with respect toX 1Ξ. If model (3.1) holds,
then

C
`

X 1Ξ; c
˘

“

K
ÿ

t“1

ctErY |X 1Ξ, T “ ts

“

K
ÿ

t“1

ctErErY |X, T “ ts |X 1Ξ, T “ ts

“

K
ÿ

t“1

ctErµ0pXq ` η
1
tX |X 1Ξ, T “ ts by (3.1)

“

K
ÿ

t“1

ctErpηt ´ η̄q1X |X 1Ξ, T “ ts (by zero-sum constraint on contrast c)

“

K
ÿ

t“1

ctpηt ´ η̄q
1X (by the measurability condition)

“

K
ÿ

t“1

ctpµ0pXq ` η
1
tXq (by the zero-sum constraint on contrast c)

“

K
ÿ

t“1

ctErY |X, T “ ts (by (3.1))

“ C pX; cq .

That pη1, . . . ,ηKq are distinct and πt ą 0 is sufficient to guarantee that there are K ´ 1 nonzero eigenvalues in the
matrixH in (3.2). Since the “between” group dispersion matrixH in (3.2) has K ´ 1 nonzero eigenvalues and the
rank of Ξ is K ´ 1, it is clear spanpΞq “ SC|X .

A.5 Proof of Proposition 3.2

Proof. Let Yt denote Y given T “ t pt “ 1, . . . ,Kq, i.e., the T -specific outcome. For a given β, consider the
expression:

E
“

pY ´ γTβ
1Xq2

‰

“

K
ÿ

t“1

πtE
“

pYt ´ γtβ
1Xq21pT“tq

‰

“

K
ÿ

t“1

πtE
“

pYt ´ γtβ
1Xq2

‰

,

which can be minimized by minimizing each of the K terms with respect to γt pt “ 1, . . . ,Kq separately. For the
uncentered γ̃t, standard least-squares theory gives the solution as

γ̃t “
covpβ1X, Ytq

varpβ1Xq
“
β1covpX, Ytq

β1ΣXβ
pt “ 1, . . . ,Kq.

BecauseX is centered and Yt is centered within each treatment t, the covariance in the numerator can be written as
covpX, Ytq “ ErXYts “ ErXErYt|Xss “ ErXX 1ηts “ ErXX 1sηt “ ΣXηt,

and hence

γ̃t “
β1ΣXηt
β1ΣXβ

pt “ 1, . . . ,Kq.

Centering the γ̃t finishes the proof.
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A.6 Proof of Proposition 3.4

Proof. This equivalency, presented in Proposition 3.4, follows from Proposition 3.3 that gives an explicit expression of
the minimizer pγ1, γ2,βq of (3.6) in terms of the population parameters in (3.1), and the expression of ξ1 available in a
closed form.

Consider the criterion of (3.6) at the minimum:

p˚˚q “ min
pγ1,γ2,βq

ErpY ´X 1βγtq
2s

“ min
pγ1,γ2,βq

π1ErpY ´X 1βγ1q
2 | T “ 1s ` p1´ π1qErpY ´X 1βγ2q

2 | T “ 2s
(A.4)

By Proposition 3.3, the minimum p˚˚q occurs at β “ ξ1 and γt “ pξ1
1ΣXξ1q

´1ξ1
1ΣXpηt ´ η̄q “

pξ1
1ΣXξ1q

´1ξ1
1ΣX pηt ´ tπ1η1 ` p1´ π1qη2uq pa “ 1, 2q, that is:

γ1 “ pξ1
1ΣXξ1q

´1ξ1
1ΣXpη2 ´ η1qpπ1 ´ 1q “ ‖η2 ´ η1‖pπ1 ´ 1q and

γ2 “ pξ1
1ΣXξ1q

´1ξ1
1ΣXpη2 ´ η1qπ1 “ ‖η2 ´ η1‖π1,

(A.5)

which follows from ξ1 “ pη2 ´ η1q{‖η2 ´ η1‖. Plugging (A.5) and βp“ ξ1q “ pη2 ´ η1q{‖η2 ´ η1‖ into the second
line of (A.4) gives:

p˚˚q “π1ErpY ´X 1pη2 ´ η1qpπ1 ´ 1qq2 | T “ 1s ` p1´ π1qErpY ´X 1pη2 ´ η1qπ1q
2 | T “ 2s

“π1ErpY ´X 1βpπ1 ´ 1qq2 | T “ 1s ` p1´ π1qErpY ´X 1βπ1q
2 | T “ 2s

“π1ErpY ´X 1βpT ` π1 ´ 2qq2 | T “ 1s ` p1´ π1qErpY ´X 1βpT ` π1 ´ 2qq2 | T “ 2s

“ ErpY ´X 1βpT ` π1 ´ 2qq2s,

(A.6)

in which we set β “ pη2 ´ η1q P Rp. The last line of (A.6) is the least squares criterion on the right-hand side of (3.10)
associated with β˚ of model (3.8). Since the minimum p˚˚q (A.4) is unique, it follows that β˚ “ pη2 ´ η1q, which is
proportional to ξ1 “ pη2 ´ η1q{‖η2 ´ η1‖.

A.7 Depression treatment study: Boxplots of the estimated Values of ITRs with a larger number of
pretreatment covariates
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Figure A1: Comparison of the boxplots of the estimated Values (5.1) of the treatment decision rules (ITRs) (the 4
methods [CSIM, MC, K-LR, K-SAM] considered in the main manuscript and the two naive rules of assigning everyone
placebo [All PBO] and everyone the active drug [All DRUG]), obtained from 500 randomly split testing sets. Higher
Values are preferred.
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Code (Github Repository)

Click here to download Link(s) to supporting data
http://github.com/syhyunpark/hd-csim

http://github.com/syhyunpark/hd-csim
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