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A Appendix

A.1 Proof of Theorem 2.1]

Proof. Suppose there is a sufficient reduction R(X) = B* X and the associated unspecified functions {g;}e7,
i.e., assume representation (2.5) with B = B*. Let g (B* X)) := ¢,(B* X)) — E[g7(B* X)|X] (¢t € T), which,
by rearrangement, gives g.(B* X) = E[gr(B* X)|X] + gf(B*X) (t € T), where, by definition, the term
E[gr(B* X )| X] does not depend on T (as T is integrated out) and the term g} (B* X)) (¢t € T) is designed to satisfy
(2.7). Thus, for any contrast vector ¢, we can rewrite (2.5) (with B = B*') as

K K K

Z cige(B¥X) = Y eofElgr(B* X)| X] + ¢f (B¥X)} = 2 cg) (BYX),

t=1 =

where the second equahty follows from Zt 1¢Elgr(B¥ X)|X] = E[gT(B*’X)\X] Zt 1 ¢t = 0. Therefore, for

representation (2.3), we can always reparametrize the set of functions {g; }te7 by {g; }+e7 that satlsﬁes (2.7), implying
that we can assume g; = g;°, without loss of generality. By definition 1i we can re-express (2.5) (with B = B*) as

K
C(X;c) = Z E[Y|X,T=1t] = Z crgf (B¥ X), (A1)

for any contrast vector c. Under the general model 1nd1cates that the X -by-T  interaction term g(X,T =t)
(t € T) in (2.1 corresponds to the term g (B *’X i smce the second equation in holds for any
arbitrary contrast c = (¢1,...,CK). Furthermore the term ,u X 2.1) corresponds to (X)) of model 2.0), since

(X)) of model (2.6| represents the unspecified X marginal effect Thus under the general model (2.1} . 2 2.5) with
B = B* implies model 2.6).

Conversely, if we assume model (2.6), then, by definition (2.4) we have

K K
C(X;c) = Y E[YIX,T=t]= 0+ ) cgf(B¥X), (A2)

t=1 t=1

for all contrast vectors ¢, where the X marginal effect 1(X) in li drops out due to ZtK: 1 ¢t = 0. Expression tj
implies that B* X is a sufficient reduction for C(X; ¢), implying (2.5) with B = B*. OJ

A2 Proof of Corollary 2]

Proof. By Theorem[2.1} R(X) = B* X of model is a sufficient reduction (2.5)). We need to show that span(B*)
is a minimal reduction, and therefore span(B*) = Sc|x - Due to the constraint ti B* of model is not related
to the X marginal effect, therefore there is no “nuisance” dimension contained in span(B*). Moreover, since B* € O,
the columns of B* are linearly independent. This implies B* is a basis for S| x .

O

A.3 Justification for excluding the main effect term in the optimization-based representation (2.8)

Under model (2.6) of the main manuscript, we can view the treatment ¢-specific functions {g; };c7 and the dimension
reduction matrlx B* as the solution to the following optimization:

. 2
(g5 gk BY) = agmin  E[(Y — u(X) — gr(B'X))’]
gi€H(B) BeO, (A.3)

subject to E [g7(B'X)|X] =0,
where p(X) is the fixed term given from the assumed model (2.6). However, in (A.3), we have

argmin  E [Y2 + (X)) + (9r(B'X))” = 2u(X)Y — 2g7(B'X)Y + 2gT(B’X),u(X)]
gieH(B) BeO,

= argmin
gt€H(B) BeO,

E[Y? + (9r(B'X))" — 20r(B'X)Y +29r(B'X)u(X)
= argmin [Y2 + (9r(B X)) —297(B'X)Y + QE[gT(B’X)M(XﬂX]]

gteH(B) BeO,

= argmin

E|Y?+ (9r(B'X))’ - QgT(B’X)Y] :
gi€H(B) BeO,
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where the first equality follows from the fact that 1(X) is not a component that we optimize over, the second equality
follows from an application of the iterated expectation rule to condition on X and the last equality follows from
the constraint E [gr(B’X)|X] = 0 in (A.3). Therefore, representation (A.3) can be simplified to of the main
manuscript, which does not involve the unspecified term (X)) of the underlying model.

A.4  Proof of Proposition 3.1]

Proof. Note that 17; — 7} € span(E) and hence (1; — 77)’ X is measurable with respect to X'E. If model (3.1)) holds,
then

K
C(X'Eic) = > ¢E[Y|X'ET=1
i=1
K
= Y «RE[E[Y|X,T=t]| X'E,T =t
t=1
K
= D aE[po(X) +nX | X'E,T =] by GI)
t=1
K
= Z ciE[(n: —m) X | X'E,T = t] (by zero-sum constraint on contrast c)
=1
K
= Z ci(n: — 1)’ X (by the measurability condition)
=1
K
= Z ct(po(X) +n;X) (by the zero-sum constraint on contrast c)
=1
K
= Y. aE[Y | X,T =t] (by BI))
=1
= C(X;¢)
That (71, . ..,mk ) are distinct and 7; > 0 is sufficient to guarantee that there are K — 1 nonzero eigenvalues in the

matrix H in (3.2). Since the “between” group dispersion matrix H in (3.2)) has K — 1 nonzero eigenvalues and the
rank of 2 is K — 1, it is clear span(E) = S¢|x.

O

A.5 Proof of Proposition 3.2]

Proof. Let Y; denote Y given T =t (¢t = 1,...,K), i.e., the T-specific outcome. For a given (3, consider the
expression:

K K
E[(Y =B X)*] = D mE[(Y: = 1B X)* Lir=p] = D mE[(V: — 18'X)?],
t=1 t=1
which can be minimized by minimizing each of the K terms with respect to v, (¢t = 1,..., K) separately. For the
uncentered 7, standard least-squares theory gives the solution as

cov(@X,Y;) Beov(X,Y;)
var(BX) = B'ExS
Because X is centered and Y; is centered within each treatment ¢, the covariance in the numerator can be written as
cov(X.Y,) = E[XY,] = E[XE[Y,|X]] = E[X X n,] = E[X X']n, = Sxn.

Tt =

(t=1,...,K).

and hence
~ B’ xn:

’)’t—ﬂlzxﬂ (t:].,,K)

Centering the 7, finishes the proof.
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A.6 Proof of Proposition[3.4]

Proof. This equivalency, presented in Proposition [3.4] follows from Proposition [3.3]that gives an explicit expression of
the minimizer (1,2, 3) of (3.6) in terms of the population parameters in (3.1), and the expression of &; available in a
closed form.

Consider the criterion of (3.6) at the minimum:

(##) = min E[(Y — X/ﬂ'yt)Z]

(v1:72.8

= minﬂ) mE[(Y = X'By)? | T =1]+ (1 —m)E[(Y — X'Bv)* | T = 2]
Y1572,

(A4)

By Proposition the minimum (#%) occurs at B = & and 3 = (£'2Sx&) 7 %/'Sx(n — 1) =
(&1'2x&1) 71 Sx (e — {mm + (1 — m1)n2}) (a = 1,2), that is:

7= (&'Ex&) G Ex (e —m)(m — 1) = [[m2 — m[(m — 1) and

Yo = (£&1'Sx&) &' Ex(m2 — m)m = |n2 — m||m,

which follows from &1 = (12 — 11)/||m2 — 71| Plugging (A.5) and B(= &1) = (192 — m1)/||m2 — 11 || into the second

line of (A-4) gives:
(#%) =mE[(Y = X'(ny —m)(m —1))* | T =1] + (1 = m)E[(Y — X' (2 —m)m)* | T = 2]
=mE[(Y - X'B(m1 —1))? | T =1]+ (1 —m)E[(Y — X'Bm)? | T = 2]
=mE[(Y - X'B(T+m —2)? | T=11+1-m)E[(Y - X'B(T +7m —2))* | T =2]
=E[(Y = X'B(T +m - 2))*],

in which we set 3 = (12 — 11) € RP. The last line of (A.6) is the least squares criterion on the right-hand side of (3.10)
associated with 8* of model (3.8)). Since the minimum (#x*) (A.4) is unique, it follows that 3* = (12 — 11 ), which is
)/ O

proportional to &1 = (12 — 11)/[|m2 — m||.

(A5)

(A.6)

A.7 Depression treatment study: Boxplots of the estimated Values of ITRs with a larger number of
pretreatment covariates
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Figure Al: Comparison of the boxplots of the estimated Values (3.1)) of the treatment decision rules (ITRs) (the 4
methods [CSIM, MC, K-LR, K-SAM] considered in the main manuscript and the two naive rules of assigning everyone
placebo [All PBO] and everyone the active drug [All DRUG]), obtained from 500 randomly split testing sets. Higher
Values are preferred.
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Code (Github Repository)

Click here to download Link(s) to supporting data
http://github.com/syhyunpark/hd-csim


http://github.com/syhyunpark/hd-csim
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