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Abstract
This paper explores a methodology for dimension reduction in regression mod-
els for a treatment outcome, specifically to capture covariates’ moderating impact
on the treatment-outcome association. The motivation behind this stems from the
field of precision medicine, where a comprehensive understanding of the interactions
between a treatment variable and pretreatment covariates is essential for developing
individualized treatment regimes (ITRs). We provide a review of sufficient dimen-
sion reduction methods suitable for capturing treatment-covariate interactions and
establish connections with linear model-based approaches for the proposed model.
Within the framework of single-index regression models, we introduce a sparse esti-
mation method for a dimension reduction vector to tackle the challenges posed by
high-dimensional covariate data. Our methods offer insights into dimension reduc-
tion techniques specifically for interaction analysis, by providing a semiparametric
framework for approximating the minimally sufficient subspace for interactions.

Keywords Precision medicine · Modified covariate method · Single-index model ·
Sufficient reduction · Central mean subspace

1 Introduction

Cook (2007, Sect. 8.2) considered the notion of sufficiency to the realm of regression
as a dimension reduction concept (see also, (Li 1991, 1992; Cook 1994, 1996; Bura
and Cook 2001; Adragni and Cook 2009; Ma and Zhu 2012, 2013) for discussions on
sufficient dimension reduction). Given a set of p covariates X ∈ R

p and an outcome
variableY ∈ R, Cook’s notion of a sufficient subspace in regression canbe summarized
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as Y |X d= Y |R(X) where R : R
p �→ R

q , q < p, i.e., the covariate-outcome
association is captured by a lower-dimensional association based on R(X) ∈ R

q .
The central subspace, which we denote by SY |X , is the subspace with the smallest

possible dimension q in R
p, such that Y is independent of X given R(X) = B′X

for some p × q matrix B, q < p, in which the columns of B form a basis for the
subspace (Cook and Li 2002). For comprehensive discussion on the central subspace,
see Cook (1998). Dimension reduction is often aimed at reducing dimensionality
for modeling the conditional mean function E[Y |X] alone, while leaving the rest of
the distribution Y |X as the “nuisance parameter.” For this case, Cook and Li (2002)
introduced the central mean subspace, denoted as SE[Y |X], defined to be the smallest
subspace, span(B) for some basis matrix B, sufficient to model the conditional mean
E[Y |X].

In this paper, we focus on the notion of a sufficient subspace in regression with an
outcome variable Y when our interest is in the interaction effect between the vector of
covariates X ∈ R

p and another variable T ∈ T . This paper considers the case when
T is a discrete random variable on a space T = {1, . . . , K }, i.e., there are K possible
levels for the random variable T , and the dimensionality of X is potentially large. The
primary focus is on reducing the dimension of X , using a (regularized) single index
regression (Stoker 1986; Carroll et al. 1997; Xia et al. 1999; Wang and Yang 2009;
Poon and Wang 2013; Radchenko 2015; Liu et l. 2023) to parsimoniously model the
effects of interactions between X and T on Y . The motivation for this work is in the
context of precision medicine, where we seek to optimize an individualized treatment
rule (ITR) that assigns a treatment to each patient according to the patient’s specific
characteristics. Typically, individual-specific clinical characteristics are represented
by a vector of covariates X measured before treatment assignment, and treatment
option can be represented by the variable T ∈ T . An optimal ITR relies on the
X-by-T interaction effects on Y (see, e.g., Qian and Murphy 2011), rather than the
main effects of X that are unrelated with treatment T . Therefore, a sufficient reduction
subspace for X in this setting will typically be defined in terms of a subspace sufficient
to model the X-by-T interaction effect, whereas the pure main effect of X on Y can
be viewed as a “nuisance” effect.

In this paper, we define a sufficient dimension reduction subspace for X in terms
of a parsimonious characterization of the X-by-T interaction effect in the conditional
mean E[Y |X, T ]. Specifically, we introduce a semiparametric framework to produce
a leading dimension reduction vector within this sufficient subspace, extending the
approach developed in Park et al. (2021) to a higher dimensional covariate setting.
The proposed framework to estimate the X-by-T interactions takes the linear model
based approaches as its special cases (e.g., Lu et al. 2011; Tian et al. 2014a; Shi et al.
2016, 2018; Jeng et al. 2018). Luo et al. (2018) considered sufficient dimension reduc-
tion to estimate a lower dimensional linear combination of X that is sufficient to model
the regression causal effect, defined as the mean difference in the potential outcomes
(Rubin 1974) conditional on X (see also, Luo et al. 2017), when the treatment vari-
able T is binary-valued. Our framework, instead, focuses on the interaction between
covariates and treatment that allows general K treatment levels, with emphasis on
establishing connections with existing linear model-based methods.
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The paper is organized as follows. We begin by providing an overview of suffi-
cient dimension reductionmethods for capturing interaction effects between treatment
and covariates in Sect. 2. We then establish connections between these methods and
existing linear model-based approaches in Sect. 3, followed by development of a
semiparametric modeling framework that focuses on achieving a single-dimensional
reduction, with an L1 regularization to address the challenges posed by high-
dimensional data in Sect. 4.We present simulation studies to assess the performance of
the proposed method in Sect. 5, and an application to a depression randomized clinical
trial (RCT) data in Sect. 6. The paper concludes with discussion in Sect. 7.

2 Sufficient reduction for interactions

2.1 Preliminaries

We express the conditional mean E[Y |X, T ] in terms of a main effect of X (i.e., the
term μ(X)) and a X-by-T interaction effect (i.e., the term g(X, T )),

E[Y |X, T ] = μ(X) + g(X, T ), (2.1)

where we impose a constraint on g(X, T ),

E[g(X, T )|X] = 0, (2.2)

for the identifiability of the decomposition in Eq. (2.1). Of note, the main effect of T
is included in the term g(X, T ) in Eq. (2.1). The constraint Eq. (2.2) ensures that the
first component μ(X) in Eq. (2.1) does not involve T . Specifically, in representation
Eq. (2.1), the term μ(X) captures the X-related effect that is consistent across levels
of T . On the other hand, the term g(X, T ) captures the X-related effect that interacts
with the specific value of T = t (t ∈ T ), hence it is called the X-by-T interaction
term. Throughout the paper, we write �X = var(X), and assume an additive mean
zero noise with finite outcome variance.

2.2 Central mean subspace

For a discrete treatment space T = {1, . . . , K } with K available treatments, an ITR,
D(X) : Rp �→ T , is defined to map each individual’s pretreatment covariates X ∈ R

p

to one of the K available treatment options (Murphy 2003; Robins 2004; Cai et al.
2011; Qian and Murphy 2011; Zhang et al. 2012). The average outcome when all
individuals are treated according to such an ITR is referred to as the “value” (V )

of the ITR (Qian and Murphy 2011); we can express the “value” of an ITR D as:
V (D) = E[E[Y |X, T = D(X)]]. Without loss of generality, let us assume that a
larger value of Y is desirable, so that we wish to maximize the value V (D). Then it
is straightforward to verify that the optimal ITR, denoted as Dopt, which results in the
largest value V (Dopt), is of the form:
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Dopt(X) = argmaxt∈T E
[
Y |X, T = t

]
, (2.3)

that is, the optimal ITR Dopt(X) assigns a treatment t ∈ T to an individual with
pretreatment characteristics X that yields the highest expected quality treatment given
X .

Wewill cast the notion of sufficient reduction specifically for the X-by-T interaction
effects, g(X, T ) in Eq. (2.1). We define a contrast vector c = (c1, . . . , cK )′ ∈ R

K

as a vector such that
∑K

t=1 ct = 0 (zero-sum constraint) with the elements ct (t =
1, . . . , K ), where ct ’s are not all zeros to avoid the trivial case.

Definition 1 For an arbitrary contrast vector c = (c1, . . . , cK )′, we define the mean
outcome contrast function given X , as the following linear contrast:

C(X|c) =
K∑

t=1

ctE [Y |X, T = t] . (2.4)

For example, if K = 2 with c1 = 1 and c2 = −1, the contrast function Eq. (2.4),
i.e., the function C(X|c) = E [Y |X, T = 1]−E [Y |X, T = 2], is reduced to the case
studied by Luo et al. (2018), where its sign would determine the optimal ITR defined
in Eq. (2.3).

In this paper, we consider a lower dimensional linear transformation of X that
is sufficient, for any contrast vector c ∈ R

K , to recover the mean contrast function
C(X|c) in Eq. (2.4).
Definition 2 Let B denote a p × q matrix with full column rank. The transformation
R(X) = B′X is said to be a sufficient dimension reduction for X-by-T interactions,
if

C(X|c) = C(B′X|c) =
K∑

t=1

ct gt (B′X) (2.5)

for any contrast vector c, where the treatment t-specific functions {gt (B′X)}t∈T are
unspecified functions associated with each level of T ∈ T , defined over B′X ∈ R

q .
Correspondingly, the column space of B will be called a sufficient reduction subspace
for X-by-T interactions.

For any p × q matrix B = [β; . . . ;βq ] satisfying Eq. (2.5) and any p × p
nonsingular matrix η, the matrix ηB still satisfies Eq. (2.5) if the {gt }t∈T are
adjusted accordingly, and a further constraint on B is needed for an identifiable
parametrization. To remove trivial ambiguity, let us define the space of p × q
matrices, denoted as �q , that have a positive first nonzero entry and consists of
q distinct orthonormal vectors. In Eq. (2.5), without loss of generality, we assume
B ∈ �q .

As the notion of sufficiency Eq. (2.5) relies on the outcome contrast function C(X|c)
not involving the term μ(X) in Eq. (2.1), we can formalize a minimally sufficient
dimension reduction in X by solely focusing on the term g(X, T ) in Eq. (2.1).
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Definition 3 A sufficient reduction subspace for X for X-by-T interactions is said
to be minimal, if the dimension of its span is less than or equal to that of any other
sufficient reduction subspace for such interactions.We denote the minimally sufficient
reduction subspace (also called the central mean subspace) for X-by-T interactions
as SC|X , and dim(SC|X ) will denote its dimension.

The central mean subspace of Cook and Li (2002) refers to the minimally sufficient
subspace inRp associatedwith themean response function. The subspace SC|X defined
above is a special case of the central mean subspace for the mean function Eq. (2.1)
in which only the interaction term g(X, T ) is considered for dimension reduction.
We assume that the central mean subspace for interactions, SC|X , uniquely exists
throughout this article. The uniqueness of the central mean subspace is guaranteed
under fairly general conditions (Cook and Li 2002; Luo et al. 2018; Yin et al. 2008);
for example, it is guaranteed when the domain of X is open and convex.

Dimension reduction using a minimal number of directions, dim(SC|X ), is impor-
tant for interpretability and parsimonious parametrization. By solely concentrating on
g(X, T ), the dimension reduction process can be streamlined to capture the essential
aspects of X that are crucial for estimating treatment effects or studying interactions,
allowing for a more concise and targeted representation of the data while maintaining
the necessary information for decision-making. In practice, 1-dimensional reduc-
tions often provide reasonable approximations to capture pertinent interaction effects.
Examples of 1-dimensional reductions for X-by-T interactions include performing a
regression with a linear model that focuses on a single vector of coefficients (e.g., Tian
et al. 2014a; Petkova et al. 2016) and its semiparametric generalization with a set of
flexible link functions, a single-index model with treatment level-specific link func-
tions (Park et al. 2021). In the remainder of this section, we introduce a semiparametric
regression framework for approximating the minimally sufficient subspace SC|X for
X-by-T interactions, and in Sect. 3, we build connections to other linear model-based
approaches as its special cases.

2.3 Models

Given the notion of sufficiency Eq. (2.5), we posit that the X-by-T interaction effect
within E [Y |X, T ] in Eq. (2.1) has an intrinsic q-dimensional structure with some
dimension reduction matrix B∗ ∈ �q of rank-q:

E [Y | X, T = t] = μ∗(X) + g∗
t

(
B∗′X

)
(t ∈ T ), (2.6)

where the term μ∗(X) is a square integrable unspecified function of X only, and the
expected value of the second term g∗

T

(
B∗′X

)
given X is zero, i.e.,

E[g∗
T

(
B∗′X

)|X] = 0, (2.7)

for model identifiability, as in the general model Eq. (2.2). Let us use the notation
H(B), for each fixed B ∈ �q , to denote the space of square-integrable functions over
B′X ∈ R

q , and assume g∗
t

(
B∗′X

) ∈ H(B∗) in Eq. (2.6), for each t ∈ T . To suppress
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the treatment level T -specific intercepts (only to simplify the illustration), we assume,
without loss of generality, E[Y |T = t] = 0, i.e., the outcome Y is centered within
each treatment level t (t ∈ T ), which can be satisfied by removing the treatment level
T -specific means from Y .

The following Theorem 2.1 and Corollary 2.1 indicate that if our interest is in the
estimation of SC|X , we can focus on the estimation of B∗ of the dimension reduction
model Eq. (2.6).

Theorem 2.1 For the mean model of form Eq. (2.1), the low-rank representation of
g(X, T ) with g∗

t

(
B∗′X

)
(t ∈ T ) in Eq. (2.6) implies the sufficiency of the predictor

reduction R(X) = B∗′X for the central mean subspace SC|X .

Corollary 2.1 The set of columns of B∗ in model Eq. (2.6) is a basis of the central
mean subspace SC|X .

The proofs of Theorem 2.1 and Corollary 2.1 are in Appendix A1 and A2.

2.4 Criterion

Under model Eq. (2.6), the treatment t-specific functions {g∗
t }t∈T and the dimension

reduction matrix B∗ can be viewed as the solution to the following optimization:

(g∗
1 , . . . , g

∗
K , B∗) = argmin

gt∈H(B),B∈�q

E
[(
Y − gT (B′X)

)2]

subject to E
[
gT (B′X)|X] = 0.

(2.8)

where we disregard the unspecified term μ∗(X) in specifying the components
(g∗

1 , . . . , g
∗
K , B∗) (see Appendix A3 for the justification behind this omission of

μ(X)). The constrained least squares framework Eq. (2.8) provides a class of regres-
sion approaches to estimating the subspace SC|X = span(B∗) without involving
the nuisance component μ∗(X). Specifically, the objective function on the right-
hand side of Eq. (2.8) can be empirically approximated based on samples (yi , ti , xi )
(i = 1, . . . , n), if the T -specific unknown functions {gt }t∈T are appropriately rep-
resented subject to the constraint in Eq. (2.8). We note that representation Eq. (2.8)
extends the existing linear approaches to estimating interactions into a semiparamet-
ric framework equipped with unknown flexible functions {gt }t∈T . In Sects. 3 and
4, we shall focus on the context of a randomized experiment, where the treatment
t ∈ {1, . . . , K } is assigned independently of X with some randomization probabilities
(π1, . . . , πK ),

∑K
t=1 πt = 1 and πt > 0.

Remark 2.1 The constraint E
[
gT (B′X)|X] = 0 in Eq. (2.8) imposed on the unknown

functions {gt }t∈T parallels the constraint
∑K

t=1 ct = 0 imposed on the functions
{ct gt }t∈T of Eq. (2.5).
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3 Linear models

Let us first consider a classical linear model for the X-by-T interaction effect
defined based on a set of the treatment t-specific (length-p) coefficient vectors
ηt := �−1

X cov[Y , X|T = t] (t ∈ T ). The model is written as:

E[Y |X, T = t] = μ0(X) + η′
tX (t ∈ T ), (3.1)

where the first term μ0(X) represents an unspecified main effect of X that does not
depend on T . Let us first introduce the p × p “dispersion” matrix of the treatment
t-specific slope coefficients {ηt ∈ R

p}t∈T for the linear X-by-T interaction model
Eq. (3.1),

H =
K∑

t=1

πt (ηt − η̄)(ηt − η̄)′, (3.2)

where η̄ := E[ηt ] = ∑K
t=1 πtηt ∈ R

p. Let us define � := [
ξ1; . . . ; ξ K−1

] ∈
R

p×(K−1), as the matrix consisting of the eigenvectors (ξ1, . . . , ξ K−1) of the matrix
H Eq. (3.2) associated with the K − 1 leading eigenvalues (there are only K − 1
nonzero eigenvalues; we assume p > K − 1). Then the following proposition states
that when ηt (t = 1, . . . , K ) are distinct, span(�) corresponds to the central mean
subspace SC|X .

Proposition 3.1 Under the linear interaction model Eq. (3.1), we have C (X|c) =
C

(
�′X|c) for any arbitrary contrast c, and thus span(�) provides a sufficient reduc-

tion for Eq. (2.4). Furthermore, if ηt (t = 1, . . . , K ) are distinct, SC|X = span(�).

The proof of Proposition 3.1 is in Appendix A4 If we considermodel Eq. (3.1) within the
dimension reduction model Eq. (2.6), then Proposition 3.1 implies that span(�) =
span(B∗) and its dimension, dim(SC|X ) = K − 1. Proposition 3.1 indicates that,
to estimate vectors in SC|X , one can soley focus on estimating the eigenvectors
(ξ1, . . . , ξ K−1) of H , if the X-by-T interaction effects are linear Eq. (3.1). Next,
we will describe how to estimate the leading eigenvector ξ1 of H , utilizing the opti-
mization framework of Eq. (2.8).

3.1 A linear dimension reductionmodel

A useful 1-dimensional approximation to the linear X-by-T interaction model Eq.
(3.1) is:

E[Y | X, T = t] ≈ μ0(X) + γ̃tβ
′X (t ∈ T ), (3.3)

for a 1-dimensional (1-D) projection vector β ∈ �1 (for the model identifiability).
Model Eq. (3.3) can be used to approximate the basis of the subspace SC|X , i.e.,
�, based on a rank-1 projection determined by β ∈ R

p. In Eq. (3.3), the X-by-T
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interaction effect term γ̃tβ
′X (t ∈ T ) captures the variability in X related to T via

a 1-dimensional projection β ′X , and its interaction with T via the t-specific slopes
γ̃t ∈ R (t ∈ T ). Petkova et al. (2016) called this projection β ′X ∈ R a generated
effect-modifier, that combines p pretreatment covariates X into a single treatment
effect-modifier. As in Eq. (3.1), the term μ0(X) in Eq. (3.3) represents an unspecified
main effect of X .

Let us consider the approximationmodelEq. (3.3)within the frameworkEq. (2.6) by
centering the t-specific slopes γ̃t (t ∈ T ). Specifically, let us reparametrizeγt := γ̃t−γ̄

(t ∈ T ), where γ̄ := ∑K
t=1 πt γ̃t . Then the resulting reparametrized model of Eq. (3.3)

is

E[Y | X, T = t] ≈ μ∗(X) + γtβ
′X (t ∈ T ), (3.4)

where the first term μ∗(X) := μ0(X) + γ̄β ′X is the reparametrized version of the X
main effect μ0(X), and the slope coefficients γt ∈ R in the second term is subject to
the identifiability condition

K∑

t=1

πtγt = 0, (3.5)

that characterizes this particular reparametrization Eq. (3.4) of the approximation
model Eq. (3.3). Note, the constraint Eq. (3.5) implies E[γTβ ′X|X] = 0 for any
arbitrary β ∈ �1, which is a special case of the constraint in Eq. (2.8), where the
unknown functions {gt }t∈T are replaced with the unknown slopes {γt }t∈T and the
dimension reduction matrix B is replaced with the vector β.

To optimize the parameters {γt }t∈T and β associated with the X-by-T interactions
wihtin the rank-1 approximation model Eq. (3.4), we employ the constrained criterion
Eq. (2.8), which corresponds to solving:

argmin
γt∈R, β∈�1

E
[(
Y − γTβ ′X

)2]
, (3.6)

subject to the constraint Eq. (3.5), where the minimization is over both the slopes
{γt }t∈T and the vector β. The following proposition provides an explicit expression
for the profile minimizer {γt }t∈T within the constrained criterion Eq. (3.6), for each
fixed β ∈ �1.

Proposition 3.2 For the linear X-by-T interaction model Eq. (3.1), the mini-
mizer {γt }t∈T of the criterion Eq. (3.6) for a fixed vector β is given by γt =
(β ′�Xβ)−1β ′�X (ηt − η̄) (t ∈ T ), where η̄ = ∑K

t=1 πtηt .

The proof of Proposition 3.2 is in Appendix A5 The results in Proposition 3.2 allow us to
explicitly write the variance, var(γTβ ′X), of the X-by-T interaction effect component
γTβ ′X ,
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var(γTβ ′X) =
K∑

t=1

πt
(β ′�X (ηt − η̄))2

β ′�Xβ

=
β ′�X

[∑K
t=1 πt (ηt − η̄)(ηt − η̄)′

]
�Xβ

β ′�Xβ

= β ′�XH�Xβ

β ′�Xβ
= β̃

′
�

1/2
X H�

1/2
X β̃

β̃
′
β̃

, (3.7)

where the p-by-p matrix H is defined in Eq. (3.2), and β̃ = �
1/2
X β, in which �

1/2
X

is the symmetric “square root” of �X . We note that, minimizing criterion Eq. (3.6)
over β ∈ �1 is equivalent to maximizing the variance, var(γTβ ′X), in Eq. (3.7) over
β ∈ �1. From expression Eq. (3.7), it is clear that the X-by-T interaction variance Eq.
(3.7) is maximized if β̃ is the leading eigenvector of �

1/2
X H�

1/2
X = �

1/2
X ���′�1/2

X ,
in which � is the diagonal matrix consist of the leading eigenvalues of H . Thus, the
maximizer β̃ of the quantity Eq. (3.7) is the leading column vector of �

1/2
X �. Since

β = �
−1/2
X β̃, it follows that the maximizer β of the variance Eq. (3.7) is the leading

column vector of �, which is ξ1. Based on Proposition 3.2, we can now establish the
following proposition that offers a closed form solution for the constrained criterion
Eq. (3.6) within the context of the 1-D approximation model Eq. (3.4).

Proposition 3.3 When the true model is Eq. (3.1), the minimizer β ∈ �1 of the con-
strained criterion Eq. (3.6) for the 1-D approximation model Eq. (3.4) corresponds to
β = ξ1, which is the leading eigenvector associated with H . Furthermore, the corre-
sponding treatment t-specific slope is γt = (ξ1

′�X ξ1)
−1ξ1

′�X (ηt − η̄) (t ∈ T ).

Proposition 3.3 indicates that optimizing the constrained criterion Eq. (3.6) yields a
vector (ξ1) that belongs to the centralmean subspace SC|X for the X-by-T interactions.

Remark 3.1 The task of maximizing the ratio Eq. (3.7) over the vector β can be framed
within the framework of generalized eigen-decomposition (GED) (Dahne et al. 2014;
de Cheveigne and Parra 2014; Cohen 2022), providing insights on the optimiza-
tion process. In this GED framework, the covariance of the X × T interaction, i.e.,
�XH�X ∈ R

p×p (numerator), is a feature to enhance via optimization of β, whereas
the covariance of X , i.e.,�X ∈ R

p×p (denominator), is a feature that acts as reference
in the optimization process.

3.2 Equivalence to themodified covariate model

In the special case of K = 2 levels (i.e., when T is binary-valued), the “modified
covariate” (MC) (Tian et al. 2014a) method of modeling the X-by-T interaction effect
posits the model (see also, Lu et al. (2011); Shi et al. (2016, 2018); Jeng et al. (2018),
for similar linear model-based approaches to modeling the X-by-T interactions):

E[Y | X, T = t] = μ∗(X) + β∗′X(t + π1 − 2) (t = 1, 2), (3.8)
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for some coefficient vector β∗ ∈ R
p. The first term μ∗(X) in Eq. (3.8) represents an

unspecified X main effect (as in Eq. (2.6)), and π1 = Pr(T = 1).
In the dimension reduction model Eq. (2.6), if we specify the dimension reduction

matrix B∗ as the vector β∗ ∈ R
p and impose the unspecified functions {g∗

t }t∈T to
have a pre-specified linear form:

g∗
t (u) = (t + π1 − 2)u (t = 1, 2) (3.9)

(whereu = β∗′X), thenweobtain theMCmodel (3.8). Specifically, the set of t-specific
functions {g∗

1 , g
∗
2} in Eq. (3.9) satisfies the identifiability condition Eq. (2.7) of model

Eq. (2.6), i.e., E[β∗′X(T + π1 − 2)|X] = β∗′XE[T + π1 − 2] = 0. Since model
model Eq. (3.8) fits within the framework Eq. (2.6), we can represent the coefficient
β∗ of Eq. (3.8) using the optimization framework Eq. (2.8):

β∗ = argmin
β∈Rp

E
[(
Y − β ′X(T + π1 − 2)

)2]
, (3.10)

without including the term μ∗(X) in model Eq. (3.8). By solving an empirical version
of Eq. (3.10) based on a sample (yi , ti , xi ) (i = 1, . . . , n), we obtain a consistent
estimator of β∗, where μ(X) in model Eq. (3.8) remains unspecified.

When K = 2 and assuming linear X-by-T interactions Eq. (3.1), there exists an
equivalence between the optimization Eq. (3.6) and the right-hand side of Eq. (3.10) in
terms of generating vectors in the subspace SC|X . In the case of K = 2, the subspace
SC|X given from Proposition 3.1 is of rank-1, and is spanned by the eigenvector ξ1 of
H in Eq. (3.2) that corresponds to the only non-zero eigenvalue. Specifically, we can
express ξ1 = (η2 − η1)/‖η2 − η1‖ (Petkova et al. 2016), up to a sign. The following
Proposition summarizes the equivalence between the criteria Eqs. (3.6) and (3.10).

Proposition 3.4 For the linear X-by-T interaction model Eq. (3.1) with K = 2, the
solution β∗ of Eq. (3.10) satisfies: β∗ = ξ1, up to a scale constant. That is, under Eq.
(3.1) with K = 2, there is an equivalence between Eqs. (3.6) and (3.10) in terms of
producing vectors in SC|X (= span(ξ1)).

The proof of Proposition 3.4 is presented in Appendix A6 Proposition 3.4 states that the
modified covariate method (the right-hand side of Eq. (3.10)) produces a vector in the
subspace SC|X when T is binary (i.e., K = 2). This implies that in the special case of
K = 2, the rank-1 approximation model Eq. (3.4) reduces to the modified covariate
model Eq. (3.8) when using the optimization framework Eq. (2.8) to estimate the
dimension reduction vectorβ. The approximationmodel Eq. (3.4) is a specific instance
of the dimension reduction model Eq. (2.6) where the t-specific functions g∗

t (u) are
linear functions, g∗

t (u) = γt u (t ∈ T ). Therefore, we can view the modified covariate
method as a special case of the approach that estimates a vector in SC|X , where we
restrict the t-specific flexible functions gt to be linear, specifically in the case of K = 2.
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4 A semiparametric model

4.1 A constrained single-index regression

A semiparametric generalization of the linear rank-1 approximation model Eq. (3.4)
to model Eq. (2.6) can be defined based on replacing the unknown slopes {γt ∈ R}t∈T
in model Eq. (3.4) with unknown flexible functions {gt ∈ H(β)}t∈T defined over
an unknown single-index β ′X ∈ R. This formulation corresponds to a specific case
within the optimization framework Eq. (2.8):

argmin
gt∈H(β),β∈�1

E
[(
Y − gT (β ′X)

)2]

subject to E[gT (β ′X)|X] = 0
(4.1)

for allβ ∈ �1,where thematrix B ∈ �q is replacedwith a vectorβ ∈ �1. Specifically,
optimization Eq. (4.1) indicates that we utilize the working model Y = gT (β ′X) + ε

subject to E[gT (β ′X)|X] = 0, where ε is a mean zero noise with a finite variance
(without loss of generality, the model intercept term was suppressed). We call this
single-index model with the constraint (on gt (t ∈ T )) a constrained single-index
model (CSIM).

Within the underlying model Eq. (2.6), solving Eq. (4.1) provides us with a vector,
denoted as β∗ ∈ �1, which serves as an approximation to a vector in the subspace
SC|X = span(B∗). If q = 1, then we have β∗ = B∗, and if q > 1, then span(β∗)
represents the best rank-1 approximation to the span(B∗) in L2. To illustrate this, under
the assumed model Eq. (2.6), we can expand the square error criterion function in Eq.
(4.1) by E

[(
Y − gT (β ′X)

)2] = E
[
Y 2 − 2gT (β ′X)Y + (gT (β ′X))2

]
, and re-express

Eq. (4.1), as follows

argmin
gt∈H(β),β∈�1

E

[
Y 2 − 2gT (β ′X)

(
μ∗(X) + g∗

T (B∗′X)
) + (

gT (β ′X)
)2]

= argmin
gt∈H(β),β∈�1

E

[
Y 2 − 2gT (β ′X)g∗

T (B∗′X) + (
gT (β ′X)

)2]

= argmin
gt∈H(β),β∈�1

E

[(
gT (β ′X) − g∗

T (B∗′X)
)2]

,

(4.2)

subject to the constraint E[gT (β ′X)|X] = 0 in Eq. (4.1). In Eq. (4.2), the first
equality follows from the fact that the expected value of the cross-product term,
2gT (β ′X)μ∗(X), vanishes to zero (implying that the nuisance term μ∗(X) vanishes
from the expression) due to E[gT (β ′X)μ∗(X)|X] = μ∗(X)E[gT (β ′X)|X] = 0 (as a
result of the constraint in Eq. (4.1)).

Expression Eq. (4.2) indicates that the model component gT (β ′X) within Eq. (4.1)
specifically targets the true X-by-T interaction effect g∗

T (B∗′X), rather than the “nui-
sance” componentμ∗(X) of the underlyingmodel Eq. (2.6). Notably, within Eq. (4.1),
it is not necessary to explicitly specify the X main effect termμ∗(X)when estimating
a vector β belonging to SC|X . As the functions {gt }t∈T are unknown flexible functions,
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a closed-form solution for Eq. (4.1) is unavailable. Therefore, an iterative procedure
is required to optimize β and {gt }t∈T . We describe below our approach to obtaining a
profile estimator of {gt }t∈T for each value of β. In Sects. 4.3 and 4.4, we will describe
our approach to estimating B with an additional regularization to address the potential
high dimensionality of the covariates data.

The constraint in Eq. (4.1) on the functions {gt }t∈T can be absorbed into their
basis construction through reparametrization, as we describe next. Suppose we have
a set of points (β ′xi , ti ) (i = 1, . . . , n) for a fixed β. We can represent gti (β

′xi )
(i = 1, . . . , n) based on a d-dimensional basis �(·) ∈ R

d (e.g., B-spline basis on
evenly spaced knots on a bounded domain):

gti (β
′xi ) = �(β ′xi )′θ ti (i = 1, . . . , n) (4.3)

for a set of unknown basis coefficients {θ t ∈ R
d}t∈T , for each given β. We impose

the following restriction on Eq. (4.3) to satisfy the required constraint in Eq. (4.1),

K∑

t=1

πtθ t = πθ = 0, (4.4)

where θ := (θ ′
1, . . . , θ

′
K )′ ∈ R

dK is the vectorized version of the basis coefficients
{θ t }t∈T in Eq. (4.3), and thematrixπ := [π1 Id; . . . ;πK Id ] ∈ R

d×dK is the constraint
matrix with πt = Pr(T = t), and 0 ∈ R

d is the length-d vector of zeros. Condition
Eq. (4.4) indicates E[θT ] = 0, and is a sufficient condition to satisfy the constraint in
Eq. (4.1) for any set of functions of the form Eq. (4.3).

Let the n × d matrices Dβ,t (t = 1, . . . , K ) denote the evaluation matrices of the
basis �(·) on β ′xi (i = 1, . . . , n) specific to the treatment T = t (t = 1, . . . , K ),
whose i th row is the 1 × d vector �(β ′xi )′ if ti = t , and a row of zeros 0′

d if
ti 	= t . Then, the column-wise concatenation of the design matrices {Dβ,t }t∈T , i.e.,
the matrix Dβ = [Dβ,1; . . . ; Dβ,K ] ∈ R

n×dK , defines the model matrix associated
with θ := (θ ′

1, . . . , θ
′
K )′ ∈ R

dK for representation Eq. (4.3). We define a P-spline
penalty matrix associated with the basis coefficient θ ∈ R

dK ; we write P = (1′
K ⊗

δ)′(1′
K ⊗ δ) ∈ R

dK×dK , where 1K ∈ R
K is the vector of ones, δ ∈ R

(d−2)×d is the
second order P-splines difference penalty (Eilers and Marx 1996), and ⊗ represents
the Kronecker product. For a fixed β and a roughness penalty parameter r ≥ 0,
denoting Yn×1 = (y1, . . . , yn)′, an empirical criterion function associated with the
constrained optimization problem Eq. (4.1) is ‖Yn×1− Dβθ‖2+rθ ′Pθ , subject to the
constraint in Eq. (4.4). The linear constraint Eq. (4.4) πθ = 0 can be absorbed into
the model matrix Dβ and the penalty matrix P as follows. We can find a basis matrix
Q ∈ R

dK×d(K−1) (that spans the null space of the linear constraint Eq. (4.4)), such that
if we set θ = Qθ̃ for any arbitrary vector θ̃ ∈ R

d(K−1), then the resulting vector θ ∈
R
dK automatically satisfies the constraint Eq. (4.4), i.e., πθ = 0. Such a basis matrix

Q can be constructed by the “Q” component of a QR decomposition of the matrix π ′
in Eq. (4.4). By setting D̃β ← Dβ Q and P̃ ← Q′P Q, we can then reparametrize
the constrained objective function in terms of the unconstrained vector θ̃ ∈ R

d(K−1),
with the corresponding unconstrained objective, ‖Yn×1 − D̃β θ̃‖2 + r θ̃

′
P̃ θ̃ , which
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we optimize over θ̃ in an unconstrained fashion. For each fixed β, we choose the
roughness penalty parameter r ≥ 0 via generalized cross-validation (GCV). The

corresponding unconstrained minimizer ˆ̃
θ ∈ R

d(K−1) is then transformed back to

the constrained space to obtain θ = (θ̂
′
1, . . . , θ̂

′
K )′ := Q ˆ̃

θ ∈ R
dK , yielding the

corresponding estimator ĝt (·) = �(·)′θ̂ t (t ∈ T ) of the CSIM component Eq. (4.3),
for each fixed β.

Now, denoting the least squares criterion for β that corresponds to Eq. (4.1) as

Q̂(β) = n−1
n∑

i=1

(
Yi − ĝTi (β

′Xi )
)2

/2, (4.5)

its gradient is ∇ Q̂(β) = −n−1 ∑n
i=1

(
Yi − ĝTi (β

′Xi )
) ˙̂gTi (β ′Xi )Xi , where ˙̂gt (u)

denotes the derivative of ĝt (·) evaluated at u.

4.2 Geometric intuition

In this section, we will provide some geometric intuition behind the optimization
approach Eq. (4.1) to approximating the interaction effect term g(X, T ) of model Eq.
(2.1).We can easily confirm that the profile minimizer, which we denote in this section
as {g∗

t }t∈T for each fixed β ∈ �1, of the constrained least square criterion Eq. (4.1)
satisfies:

g∗
t (β

′X) = E[Y |β ′X, T = t] − E[Y |β ′X] (t ∈ T ). (4.6)

In Eq. (4.6), the first termE[Y |β ′X, T = t] is the treatment t-specific L2 projection of
Y onto H(β), whereas the second term −E[Y |β ′X] acts as a “shift” to adjust the first
term in order to satisfy the constraint in the criterion Eq. (4.1). This adjustment via
shifting byE[Y |β ′X] in Eq. (4.6) ensures the orthogonality of the function g∗

T (β ′X) in
Eq. (4.6) with respect to the unspecified termμ∗(X) in the underlying model Eq. (2.1)
in L2 for each value of β. As a result, any possible misspecification of the “nuisance”
term μ∗(X) does not affect the optimization of the dimension reduction vector β.

To provide a geometric illustration, let us consider a very simple example where we
regress Y on the treatment variable T ∈ T without any covariates (i.e., the covariate
vector X contains only the intercept term “1”). In this simple setting, the solution
{g∗

t }t∈T in Eq. (4.6) are just treatment t-specific constants:

g∗
t = E[Y |T = t] − E[Y ] (t ∈ T ). (4.7)

Given the sample data (yi , ti ) (i = 1, . . . , n), let Y = (y1, . . . , yn)′ ∈ R
n denote

the (length-n) observed vector of responses. In Eq. (4.7), the second term E[Y ] cor-
responds to the grand average of Y , represented by the vector Ȳ1n ∈ R

n , where
Ȳ = ∑n

i=1 yi/n is the grand average, and 1n = (1, 1, . . . , 1)′ ∈ R
n . On the other hand,

the first term E[Y |T = t] (t ∈ T ) corresponds to the treatment group-specific aver-
age, represented by the vector Ŷ = (Ŷ1, . . . , Ŷn)′ ∈ R

n , where Ŷi = ∑K
t=1 1(ti=t)Ȳ (t)
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Fig. 1 In the simple linear regression E[Y |T ] of the outcomes on the treatments, the fitted Ŷ for the model
E[Y |T ] is the orthogonal projection of the observed Y onto the plane of the column space spanned by the
intercept and the treatments, which is represented by the blue plane. The fitted vector for the “1” (i.e., the
intercept)-only model E[Y |1] is represented by Ȳ1n . In the picture, the magnitude of the interaction effect
between T and “1” is quantified by the squared length of the vector Ŷ − Ȳ1n

(i = 1, . . . , n) with Ȳ (t) = ∑n
i=1 yi1(ti=t)/

∑n
i=1 1(ti=t), which corresponds to the

treatment t-specific average.
Then, in Fig. 1, the fitted value of g∗

T in Eq. (4.7) is represented by the adjacent
side Ŷ − Ȳ1n ∈ R

n . The squared magnitude of this vector, ‖Ŷ − Ȳ1n‖2 corresponds
to the variance of g∗

T , i.e., var[g∗
T ] = E[(g∗

T )2]. Notice that the fitted “signal” vector,
Ŷ − Ȳ1n (related with the T -by-“1” interaction) is orthogonal (perpendicular) to the
“nuisance” vector Ȳ1n (unrelated with T ) in Fig. 1.

Intuitively, the “effect” of intercept “1” in the intercept-only model is to average
the response Y ∈ R

n , which results in the fit Ȳ1n ∈ R
n in Fig. 1. The squared

magnitude ‖Ŷ − Ȳ1n‖2 ∼ var[g∗
T ], where Ŷ is the vector of treatment t-specific

averages, quantifies the extent to which the “effect” of intercept “1” (i.e., the grand
averaging) is modified by the variable T , and hence the magnitude of ‖Ŷ − Ȳ1n‖2
quantifies the intensity of the “interaction effect” between the intercept “1” and T .
Analogously, within the optimization framework Eq. (4.1), given a candidate β ∈ �1,
the variance of Eq. (4.6), denoted as var

(
g∗
T (β ′X)

) = E
[{g∗

T (β ′X)}2], captures the
extent to which the X-by-T interaction effect varies with different values of β ′X . The
goal is to maximize this variance of the X-by-T interaction effect over β, similar to
the objective of maximizing the variance Eq. (3.7) in previous analysis.

When we replace the intercept “1” with the unknown index β ′X , the blue plane in
Fig. 1 represents the Hilbert space of measurable functions of (β ′X, T ). Maximizing
the variance of the X-by-T interaction effect, var

[
g∗
T (β ′X)

]
, overβ ∈ �1 corresponds

to adjusting (tilting) the blue plane of Fig. 1. The objective is then tominimize the angle
θ formed by the hypotenuse Y − Ȳ1n and the adjacent side Ŷ − Ȳ1n (i.e., the angle θ

formed by the two dashed lines in Fig. 1). In other words, the goal is to maximize the
cosine of θ (over β ∈ �1), which tilts the plane to maximize the squared magnitude
of the vector, ‖Ŷ − Ȳ1n‖2 ∼ var

(
g∗
T (β ′X)

)
.
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Finally, we note that the two centered vectors Ŷ − Ȳ1n and Y − Ȳ1n (i.e., the
two dashed lines in Fig. 1) correspond to the fitted (Ŷ ) and the observed (Y ) vectors,
respectively, both of which centered by the intercept vector (Ȳ1n). Without centering
the fit Ŷ by the intercept Ȳ1n , there would be no Pythagorean-type sum of squares
decomposition:

‖Y − Ȳ1n‖2 = ‖Y − Ŷ‖2 + ‖Ŷ − Ȳ1n‖2, (4.8)

in which the second term, ‖Ŷ − Ȳ1n‖2, quantifies the T -by-“1” interaction effect.
Analogously, the “shifting” component −E[Y |β ′X] in Eq. (4.6) plays the role of an
“intercept.” By centering the unrestricted fit E[Y |β ′X, T ] by the reference function
E[Y |β ′X], we can achieve the following Pythagorean-type decomposition similar to
Eq. (4.8), which isolates the variance of the X-by-T interaction effect in the second
term of the decomposition:

E
[(
Y − E[Y |β ′X])2] = E

[(
Y − E[Y |β ′X, T ])2]

+E
[(
E[Y |β ′X, T ] − E[Y |β ′X])2], (4.9)

and the second term E
[(
g∗
T (β ′X)

)2] = E
[(
E[Y |β ′X, T ] − E[Y |β ′X])2] (see Eq.

(4.6) for its definition) is then maximized over β ∈ �1.

4.3 L1 regularization

One shortcoming of the formulation Eq. (4.1) is that the linear projection β ′X is
defined in terms of all the predictors in the model, i.e., the approach forces all the
predictors play a role in building an interaction term gT (β ′X). However, only a subset
of measurements in X may be useful in determining an optimal ITR. Also, high-
dimensional settings can lead to instabilities and issues of overfitting. In this section,
we introduce an L1 regularization that can both avoid overfitting and choose among
multiple potential covariates by obtaining a sparse estimate of the coefficient β in Eq.
(4.1).

Extending the L1 penalized least squares estimation approach (Tibshirani 1996;
Zou 2006; Meinshausen and Yu 2009; Schneider and Tardivel 2022), from the linear
regression context (e.g., Qian and Murphy (2011)) to the single index regression
context poses challenges due to the nonconvex nature of the squared error criterion
functionwith respect to the single index coefficient (β).Wang andYin (2008) proposed
an approach that introduces L1 regularization into the minimum average variance
estimation (MAVE) method of Xia et al. (2002), but its computational complexity
grows rapidly with the sample size n, and also becomes unstable when the dimension
is high. In other work, Peng and Huang (2011) estimate the single-index model by
minimizing a penalized least squares criterion, performing simultaneous predictor
selection; Zhu et al. (2011) use the adaptive lasso with kernel smoothing; and Wang
and Wang (2015) use the smoothly clipped absolute deviation (SCAD) (Fan and Li
2001) penalization allowing diverging number of parameters. However, Radchenko
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(2015) noted that such penalization approaches may be problematic (particularly in
high-dimensional settings), due to the nonconvexity of the squared error criterion
function, e.g., the nonconvexity of Q̂(β) in Eq. (4.5) with respect to β. Specifically,
for a penalized criterion that appends a (convex) penalty, pλ(β) with some sparsity
tuning parameter λ ≥ 0, to the squared error criterion Q̂(β) in Eq. (4.5), then the

solution path of the minimizer β̂
(λ)

would not be generally a continuous function of
λ. For this reason, selecting an appropriate tuning parameter λ(≥ 0) is extremely
difficult.

Radchenko (2015) proposed a constrained L1 regularization approach that handles
this tuning parameter selection problem, which we will incorporate into the optimiza-
tion formulation Eq. (4.1) of CSIM. It is suggested in Radchenko (2015) that the
L1 norm of β, ‖β‖1 = λ, is directly used as the sparsity tuning parameter for β.
Thus we can consider solving a constrained minimization problem for any λ = ‖β‖1
with λ ∈ [1, λmax], where λ = 1 represents the sparsest case, and λ increases to
some specified value of λmax. The corresponding empirical version of the constrained
minimization Eq. (4.1), for each choice of λ, is:

minimize
β

Q̂(β),

subject to ‖β‖1 = λ

(4.10)

(where Q̂(β) is given in Eq. (4.5)), for a sparsity-inducing parameter λ ∈ [1, λmax].
For example, a small value of λ (≥ 1) in Eq. (4.10) will generate a sparse solution β,
with λ = 1 corresponding to the sparsest case for β (i.e., only one component of β

equals 1 and all other components of β are zero).
Radchenko (2015) proved that the constrained minimizer, β(λ), constructs a con-

tinuous path as a function of the tuning parameter λ ∈ [1, λmax]. Therefore, with
the criterion function Q̂(β), the sparsity parameter λ can be reliably selected by
minimizing an estimate of the expected value of Q̂(β(λ)) in Eq. (4.5)), for exam-
ple, a cross-validated prediction error, the Akaike information criterion (AIC, Akaike
1974), or the corrected AIC (AICc, Sugiura 1978; Hurvich and Tsai 1989). In
this paper, we will select the sparsity tuning parameter λ(≥ 1) by minimizing
AICc := n log(Q̂(β(λ)))+2p∗ +2p∗(p∗ +1)/(n− p∗ −1), where p∗ is the number
of nonzero elements in β(λ). AICc behaves similarly to a cross-validated prediction
error in our empirical studies, while showing some advantage over AIC in small sam-
ple applications. The algorithm for optimizing this sparse CSIM Eq. (4.10) follows
closely the approach of Radchenko (2015) using a block coordinate descent (BCD) of
block size 2-details are provided in Sect. 4.4.

4.4 The sparse CSIM implementation using a block-coordinate descent algorithm

In this section, we provide details of the algorithm for implementing the sparse CSIM
introduced in Sect. 4.3. Note that we work with the nontrivial case that there is at least
one non-zero component in β. At the initialization step of the estimation, we choose
the first non-zero component by
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j1 = argmin
j∈{1,...,p}

Q̂(e j ), (4.11)

in which e j = [0, . . . , 1, . . . , 0]′ ∈ R
p, where the j th component equals 1, and all

other components equal 0 (i.e., the canonical basis of Rp). Then j1 is a component
index that corresponds to the estimated best “signal” treatment effect modifier among
the p covariates. Radchenko (2015) suggests fixing β j1 = 1 throughout the estimation
procedure, to be used as the model identifiability constraint; without loss of generality,
we take β1 = 1, as we can always arrange the j1th covariate as the first component
Xi,1 of the covariate vector, and then can rescale to satisfy β ∈ �1.

Given a new value of λ on a dense grid in [1, λmax], say, λ(new) ∈ (λ(old), λmax],
the last computed solution β (old) (which satisfies ‖β (old)‖1 = λ(old) for some λ(old) ∈
[1, λ(new))), can be used as a warm start in the search for the next one. Due to the
continuity of the (L1 norm) constraint ‖β‖1 with respect to β, this search only needs
to be conducted locally near β (old), for a small change in λ, i.e., for a small increment
λ(new) − λ(old). Therefore a local (quadratic) approximation to the objective function
in Eq. (4.10) near β(old) can be justified (Radchenko 2015). The approach constructs a
sequence of locally approximated convex objective functions near the last computed
solutions, bypassing the issue of the noncontinuity of solution β with respect to λ. The
success of iterative algorithms depends on the initialization, i.e., solving Eq. (4.11),
and this is indeed the case under the setting Eq. (4.10). Due to the constraint in Eq.
(4.10),we implement a block coordinate descent algorithmas described inAlgorithm1
below, following closely that of Radchenko (2015), to obtain a sparse estimate of β.

It is suggested inRadchenko (2015) to use a block of size two that consists of { j,m},
wherem represents a fixed reference component indexwithin each for loop,which gets
updated appropriately in Algorithm 1. Denoting by A the current active component
index set, the algorithm cycles through the for loop over j’s (until convergence) which
optimizes individual blocks; this procedure is repeated untilA does not change.Within
each block, a situation where a coefficient crosses zero is handled by setting that
coefficient to exactly zero and correspondingly updating the other coefficient in the
block. To simplify the notation, for each β, let us denote the gradient of Q̂(β), i.e.,
∇ Q̂(β) in Eq. (4.5) by ∇, and accordingly, the j th component of the gradient ∇ by
∇ j .

The expression for
 j of the ( j,m)th block’s updating rule in Algorithm 1 is given
by:


 j = − (∇ j − S jm∇m
)

n−1
∑n

i=1

(
ĝTi (β

′Xi )(Xi, j − S jm Xi,m)
)2 , (4.12)

where S jm := sign(βmβ j ) − sign(βm∇ j )I{β j=0} and Eq. (4.12) is evaluated at the
current β. Note that S jm indicates the sign of βmβ j , but when β j = 0, the “sign” of β j

is simply the sign of −∇ j . The value of 
m is determined through the relationship:


m = −
 j S jm, (4.13)
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to preserve the constraint ‖β‖1 = λ(new) within each block update. The derivation for

 j in Eq. (4.12) is shown below. We minimize the squared error criterion function in
Eq. (4.10) (subject to the constraint ‖β‖1 = λ(new)) in a small neighborhood of the
current estimate, say, β̃, after performing the first order Taylor approximation to the
( j,m)th block portion of the regression model:

Q̂(β) ≈ n−1
n∑

i=1

(
Yi − ĝTi (β̃

′
Xi ) − ˙̂gTi (β̃

′
Xi )(Xi, j
 j + Xi,m
m)

)2
/2, (4.14)

where
 j := β j − β̃ j and
m := βm − β̃m . The update rule for the ( j,m)th block will

then be given by:
{
β j ← β̃ j + 
̂ j , βm ← β̃m + 
̂m

}
, where

[

̂ j , 
̂m

]′
represents

the minimizer of Eq. (4.14) over
[

 j ,
m

]′ ∈ R
2, subject to the constraint Eq. (4.13)

which preserves the L1 norm of the solution at λ(new), i.e., ‖β‖1 = λ(new). After
substituting 
m in Eq. (4.14) by −
 j S jm in Eq. (4.13), we can take the derivative of
Eq. (4.14) with respect to 
 j and set it to 0

n∑

i=1

(
Yi − ĝTi (β̃

′
Xi ) − ˙̂gTi (β̃

′
Xi )(Xi, j − S jm Xi,m)
 j

)

(
− ˙̂gTi (β̃

′
Xi )(Xi, j − S jm Xi,m)

)
= 0,

and solving for 
 j gives the expression Eq. (4.12).
At the start (i.e., when λ = 1) of the fitting procedure, set j1 in Eq. (4.11) to 1,

β = [1, 0, . . . , 0]′, m = argmax j 	=1|∇ j |, and A = {1,m}. If we increase the tuning
parameter λ(old) to the next point λ(new) on a grid [1, λmax], then the magnitude of some
coefficients of β needs to be increased from their current values to ensure the new
constraint ‖β‖1 = λ(new) in Eq. (4.10) is satisfied. Without loss of generality, at the
start of Algorithm 1, we will bring the increment to the mth component of β, i.e., we
set βm ← βm + sm(λ(new) − λ(old)) with sm := sign(−∇m), so that the change reduces
the criterion function of Eq. (4.10). The rest of the updating procedure is given in
Algorithm 1 below.

As the tuning parameter λ(old) is increased to the next point λ(new) on a grid [1, λmax],
Algorithm 1 employs warm-start and active-set techniques for faster computation. The
loop on line 4 involves only elements within the active set, and the algorithm checks
(on line 10) whether any excluded covariates should be added to the model. The active
set remains unchanged for most grid points in the path, leading to substantial compu-
tational savings when p is large on the sparse part of the solution path. Throughout
the paper, we use λmax = 4 and 100 equally-spaced grid points on [1, λmax], for
constructing the solution path.
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Algorithm 1 Block Coordinate Descent (BCD) for optimizing β, subject to ‖β‖1 =
λ(new)

1: m ← argmax j∈A\1|β j |.
2: s j ← sign(β j ); if s j = 0 for j ∈ A, then s j ← sign(−∇ j ).
3: Iterate the following for loop, until convergence of β j , j ∈ A:
4: for j ∈ A \ {1,m} do the ( j,m)th block-update:
5: if (β j 	= 0) or (s j∇ j ≤ 0 and |∇ j | ≥ |∇m |), then β j ← β j + 
 j with 
 j in (4.12).
6: else 
 j ← 0.

7: if β j switches sign, then 
 j ← 
 j − β j and β j ← 0.

8: βm ← βm + 
m with 
m in (4.13).
9: if βm switches sign, then β j ← β j + |βm |s j and βm ← 0, and redefine m.

10: if ∃ j ∈ Ac for which |∇ j | ≥ |∇m | (using the gradient in (4.5)), then append A with j and go to line
1.

11: otherwise stop.

5 Simulation illustrations

In this section, we perform numerical studies to illustrate the performance of the
proposed sparse CSIM approach for estimating ITRs in comparison with alternative
approaches as well as variable selection performance compared to the MC method.
We consider K = 2 and K = 3 cases in the simulation study because these settings
are most commonly encountered in studying heterogeneous treatment efficacy.

5.1 ITR performance for K = 2 treatment case

We consider p ∈ {50, 500} and n ∈ {250, 500}, with a varying degree in the X main
effect intensity and in the nonlinearity in the X-by-T interaction effect. We simulate
200 training datasets for each scenario. We generate covariates Xi ∼ N (0, Ip), and
treatments Ti ∈ {1, 2} (i.e., K = 2) with equal probability at random, independently
of Xi . We generate outcomes Yi = μ(Xi ) + gTi (β

∗′Xi ) + εi , with εi ∼ N (0, 0.42).
Two scenarios for the treatment-specific link function gT (u) are considered: 1) a
nonlinear contrast function gT (u) = (−1)T (cos(u) − 0.5) that gives a nonlinear X-
by-T interaction effect, and 2) a linear contrast function gT (u) = (−1)T 0.5u that
gives a linear X-by-T interaction effect, respectively. We set the true single-index
coefficient vector as β∗ = [1, 0.5, 0.25, 0.125, 0, . . . , 0]′ ∈ R

p, in which its elements
are all zeros except for the first 4 elements, thus there are only 4 “signal” covariates
among X that exhibits an interaction effect with the treatment T . For the main effect,
we set μ(X; δ) = 2 + δ cos(η′X), with η = [η1, . . . , η12, 0, . . . , 0]′ ∈ R

p, in which
the vector [η1, . . . , η12]′ ∈ R

12 is randomly generated from a multivariate normal
distribution, and is then rescaled to have unit L2 norm, for each simulation run. All the
remaining p − 12 elements of η are set to be 0; therefore, only the first 12 covariates
among X have a nonzero main effect. The scaling parameter δ ∈ {1, 2} regulates the
contribution of the main effect function μ(X) on the variance of Y , in which δ = 1
represents a relatively moderate main effect (contributing about the same variance
as the interaction effect does) and δ = 2 a relatively big main effect case (about 4
times larger than the interaction effect), respectively. For an optimal ITR specification,
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without loss of generality,we assume that a larger valueofY is desirable.We restrict our
attention to ITRs of the form, D̂(X) = arg max

t∈{1,...,K }
Ê [Y | X, T = t], where Ê [Y | X, T ]

is obtained by the following approaches.

CSIM Optimize CSIM Eq. (4.10) using the block-coordinate descent algorithm
described in Sect. 4.4. FollowingWang and Yang (2009), we set the number
of cubic B-spline basis functions to be d = 4 + [n1/5.5], where [v] denotes
the integer part of v. The corresponding ITR is D̂(X) = arg max

t∈{1,...,K }
ĝt (β̂

′
X).

MC Estimate the MC model Eq. (3.8) with efficiency augmentation (Tian et al.
2014a) by minimizing the Lasso (Tibshirani 1996) penalized objective
function with a 20-fold cross validation, under efficiency augmentation of
E [Y | X] = η′X which is fitted by the Lassowith a 20-fold cross validation,
as is done in Tian et al. (2014a), implemented using R package “glmnet”
(Friedman et al. 2010). This is a linear approach for estimating interactions.

K-LR Estimate a linear regression (LR) model by the Lasso for each of the K
(= 2) treatment groups separately, with a 20-fold cross validation to select
the tuning parameter, implemented using R package “glmnet”.

K-SAM For each of the K treatment groups separately, estimate a sparse additive
model (SAM) Eq. (Ravikumar et al. 2009), with the sparsity tuning param-
eter for the simultaneous covariate selection chosen by minimizing a 5-fold
cross validation for prediction errors, implemented using R package “SAM”
(Zhao et al. 2014).

One natural measure for the effectiveness of a treatment decision rule D̂ is called the
“Value” (V ) of a treatment decision rule D̂ (Qian and Murphy 2011), which is defined
as the expectedmean outcome if everyone in the population receives treatment accord-

ing to that rule D̂.We can estimate theValue of D̂, i.e.,EX

[
EY |X [Y | X, T = D̂(X)]

]
,

by an inverse probability weighted estimator (Murphy 2005):

V (D̂) =
n∑

i=1

Yi ITi=d(Xi )/

n∑

i=1

ITi=d(Xi ), (5.1)

computed based on a testing set. Since we know the true data generating model, we
can determine the optimal ITR, Dopt in (2.3), for each simulation setting. To evaluate
the performance of an estimated ITR D̂ from each of the 4 methods, we report the
Value ratio, V (D̂)/V (Dopt), calculated from an independent (large) testing set of size
n = 104, for each simulation setting and each of the 200 simulation replications. We
note that a higher value of the ratio indicates a better ITR performance.

In Fig. 2, we present the boxplots of the Value ratios of the estimated ITRs
obtained from 200 simulation replications, for each combination of n ∈ {250, 500},
p ∈ {50, 500} and the main effect intensity δ ∈ {1, 2} (which correspond to moderate
and bigmain effects, respectively), for the nonlinear interaction effect cases in the top
panels and the linear interaction effect cases in the bottom panels.

Under the nonlinear interaction effect, the proposed CSIM outperforms all other
alternatives in all cases. Interestingly, the method significantly outperforms the K

123



A high-dimensional single-index regression

0.80

0.85

0.90

0.95

1.00

50 500
p

V
a

lu
e

V
a

lu
e

o
p

t

Moder. Main Eff. & n = 250

0.80

0.85

0.90

0.95

1.00

50 500
p

Moder. Main Eff. & n = 500

0.80

0.85

0.90

0.95

1.00

50 500
p

Big Main Eff. & n = 250

0.80

0.85

0.90

0.95

1.00

50 500
p

Big Main Eff. & n = 500

Method

CSIM

MC

K−LR

K−SAM

Nonlinear interaction effect

0.80

0.85

0.90

0.95

1.00

50 500
p

V
a

lu
e

V
a

lu
e

o
p

t

Moder. Main Eff. & n = 250

0.80

0.85

0.90

0.95

1.00

50 500
p

Moder. Main Eff. & n = 500

0.80

0.85

0.90

0.95

1.00

50 500
p

Big Main Eff. & n = 250

0.80

0.85

0.90

0.95

1.00

50 500
p

Big Main Eff. & n = 500

Method

CSIM

MC

K−LR

K−SAM

Linear interaction effect

Fig. 2 Top panels: boxplots of the Value ratios of the ITRs estimated from the 4 methods (CSIM, MC,
K-SAM, and K-LR) for the nonlinear X-by-T interaction effect case. Lower panels: boxplots of the Value
ratios of the ITRs for the linear X-by-T interaction effect case

separate additive regressions (K-SAM) which is also equipped with a set of flexible
additive regression functions to capture the nonlinear associations. Unlike CSIM,
however, K-SAM is not robust to misspecification of the X main effect model, and
thus the method suffers inconsistency in approximating the X-by-T interaction effects
when the X main effect is not an additive structure (as in this example). Given a
nonlinear interaction effect structure, both MC and the K separate linear regressions
(K-LR) are clearly worse than CSIM that utilizes the flexible link functions, indicating
a distinct benefit of usingCSIM for estimating the nonlinear interactions over the linear
model-based methods. Under the linear interaction effect, MC outperforms the CSIM
approach, but only slightly, suggesting that in the absence of prior knowledge about
the interaction effects it is suitable to employ CSIM.

Next, we compare the performance of CSIM and MC in terms of the selection of
treatment effect modifying variables, i.e., those associated with X-by-T interaction,
with the training sample size n ∈ {100, 200, . . . , 1000}. We present these selection
performance results in Fig. 3. For each setting, we compute the proportion of correctly
selected treatment effectmodifiers, and the proportion of incorrectly selected treatment
effect modifiers, computed over the 200 simulation runs. The maximum possible
number for the correctly selected effect modifiers (i.e., the covariates associated with
nonzero elements in the estimated β) is 4. The maximum possible number for the
incorrectly selected effect modifiers is 46 for the p = 50 case, and 496 for the p = 500
case.

In Fig. 3, not surprisingly, the cases with the nonlinear interaction effect (the top
two rows) are much more favorable to CSIM over MC. CSIM tends to correctly
select the true treatment effect modifiers, whereas MC rarely selects any of the true
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treatment effect modifiers. The cases with the linear interaction effect (the bottom
two rows), on the other hand, are more favorable to MC than to CSIM, although not
by much. In fact, althogh the averaged proportions of correctly selected treatment
effect modifiers are larger for MC, the average proportions of incorrectly selected
treatment effect modifiers are actually much smaller for CSIM. Generally, due to an
increasing nuisance variability unrelated to the treatment, the X main effect intensity
(either moderate, δ = 1, or big, δ = 2) affects the treatment effect modifier selection
performance.Nevertheless, as the sample size increases,CSIM tends to recover the true
treatment effect modifiers. Overall, there is a clear advantage in utilizing the flexible
link functions for discovery of treatment effect modifiers when there exists a nonlinear
association between the treatment and a set of covariates, while the performance of
MC and CSIM is comparable when the interaction effect is linear.

5.2 CSIM performance for K = 3 treatment case

In this section, we provide additional simulation results to investigate the performance
of CSIM for estimating optimal ITRswhen the number of treatment groups K = 3.We
generate the treatment indicators Ti that take values in {1, 2, 3} at random with equal
probability, independently of Xi . We generate the covariates Xi and the outcomes
Yi , using the same X main effect function μ(Xi ; δ) and the single-index coefficient
β∗ as in the settings of Sect. 5.1, except that the treatment t-specific functions gt (u)

(u ∈ [0, 1]), are set to be
⎧
⎨

⎩

g1(u) = u1(1 − u)4/B(2, 5) − f (u)

g2(u) = u1(1 − u)1/B(2, 4) − f (u)

g3(u) = u4(1 − u)0/B(5, 1) − f (u),

where f (u) = (g1(u) + g2(u) + g3(u)) /3. Here B(a, b) = ((a)(b)) /(a + b)
is a Beta function, and u = F(β ′

0X), where F is the cumulative distribution function
(CDF) of a re-scaled and centered B((p∗ + 1)/2, (p∗ + 1)/2)

F (u) =
∫ u/r

−1

(p∗ + 1)

 {(p∗ + 1)/2}2 2p∗ (1 − t2)(p
∗−1)/2dt, u ∈ [−r , r ], (5.2)

in which p∗ denotes the number of nonzero elements in β∗, i.e., p∗ = 4, and r is the
maximum of the absolute values of {β∗′Xi , i = 1, . . . , n}. The reason for employing
the transformed variable F(β∗′Xi ) instead of β∗′Xi is that {F(β∗′Xi ), i = 1, . . . , n}
is quasi-uniformly distributed on the interval [0, 1] (Wang and Wang 2015).

The upper panel of Fig. 4 shows the true treatment-specific contrast functions
gT (u), u ∈ [0, 1], for each T ∈ {1, 2, 3}. The bottom panels of Fig. 4, display the
boxplots of the Value ratios of the ITRs estimated from the 3 different methods (CSIM,
K-LR, and K-SAM) (described in Sect. 5.1), for each combination of n ∈ {250, 500},
p ∈ {50, 500}, and the X main effect intensity parameter δ ∈ {1, 2}.

The boxplots indicates that the proposed CSIM outperforms all other methods, in
all cases. We note that, when K > 2, separately estimating E [Y | X, T = t] for each
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Fig. 3 The proportion of treatment effect modifiers “correctly selected” (in the left two columns), and
“incorrectly selected” (in the right two columns), as the training sample size n varies from 100 to 1000,
for each p ∈ {50, 500}. The rows correspond to the combinations of the levels of the nonlinearity in the
X-by-T interaction effect (nonlinear/linear interaction effect) and the levels of the intensity in the X main
effect (moderate/big main effect). The results indicate that generally a more reliable variable selection is
expected as the sample size n increases, under a moderate magnitude of the x main effect (1st and 3rd row)
compared to a big magnitude of the X main effect (2nd and 4th row)

group t ∈ {1, . . . , K } is a typical approach of modeling the X-by-T interactions.
However, estimating K separate regression models lacks parsimony and interpretabil-
ity (especially when K > 2), whereas the CSIM provides a single parsimonious
projection β ′X to model the interaction. Moreover, for greater X main effect inten-
sity, these K separate regressions tend to focus more on capturing the X main effect
and therefore possibly fail to capture important X-by-T interaction effects. On the
other hand, CSIM targets only at the interaction effect. As a result, in Fig. 4, although
the increased magnitude of the X main effect affects the performance of all methods,
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Fig. 4 Upper panel: illustration of gt (u), t ∈ {1, 2, 3}. Lower panels: boxplots of the Value ratios of the
ITRs estimated from the 3 methods (CSIM, K-LR, and K-SAM) applied to 200 simulated datasets

it has the least influence on the performance of CSIM, and more influence on that of
the K separate regression approaches.

6 Application to data from a depression RCT

The development of the CSIM method was motivated by an RCT that compares an
antidepressant (sertraline) (t = 2) and placebo (t = 1) for treating major depressive
disorder (MDD). The primary purpose of the study is the development of a biosigna-
ture, called a differential treatment response index (DTRI), defined as a combination
of multiple biological markers which permits optimization of treatment selection for
patients with MDD (Trivedi et al. 2016). In MDD, most patient characteristics have
weak to non-existent modifying effects, and therefore, the proposed sparse CSIM
modeling approach of parsimoniously combining treatment effect-modifiers to define
a DTRI (β ′x) that collectively exhibits a stronger, and possibly nonlinear, interaction
with the treatment is a clinically significant endeavor.

Of the 166 subjects, 88 were randomized to placebo and 78 to drug. Several clinical
characteristics were collected at baseline, including: (i) age; (ii) severity of depressive
symptoms measured by the Hamilton Rating Scale for Depression (HRSD) at base-
line (i.e., week 0); (iii) (the log-transformed) duration of the current major depressive
episode (MDE) (in month); and (iv) age of onset of first MDE. In addition to these
standard clinical assessments, patients underwent neuropsychiatric testing at baseline.
Patients were tested on the following tasks: Flanker and Eriksen (1974), Choice reac-
tion time (CRT; Deary et al. 2011), Word Fluency (WF; Loonstra et al. 2001), A not B
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working memory (AnotB; Herrera-Guzman et al. 2009), among others. The purpose
of these tests is to assess psychomotor slowing, working memory, reaction time (RT)
and cognitive control (e.g., post-error recovery), as these behavioral characteristics are
believed to correspond to biological phenotypes related to response to antidepressants
(Trivedi et al. 2016). Table 1 displays the means and the standard deviations of the
p = 13 pretreatment patient characteristics, X1, . . . , X13 under consideration. We
center and scale the pretreatment covariates to have zero mean and unit variance. The
response variable Y is the improvement in symptoms severity (assessed by the HRSD
scores) from baseline to week 8 taken as the difference (week 0–8), and thus larger
values of the response are considered desirable.

Table 1 presents the results from fitting the CSIM model. For comparison, the
coefficient β was also estimated using the MC method Eq. (3.10) both with/without
L1 regularization. Figure5 gives a graphic depiction of the fitted CSIM model: a
plot of the responses (adjusted for the fitted main effect) against the estimated DTRI

(i.e., the estimated single-index variable β̂
′
X) is given in the upper panel, where β̂

is obtained by optimizing CSIM Eq. (4.10) with L1 regularization. The treatment-
specific smooth functions over the estimated single-index, fitted based on d = 6 cubic
B-spline basis functions, are superimposed.As indicated in the third columnofTable 1,
the CSIM estimate β̂ has 4 nonzero coefficients, associated with the pretreatment
covariates “Age at evaluation”, “Symptom severity”, “(log) Duration of MDE” and
“Flanker Accuracy”. In the second row of Fig. 5, we display the marginal plots of
the responses against each of these 4 pretreatment covariates individually. In each
plot, the estimated treatment-specific smooth functions are overlaid to describe each
predictor’s relationship with the response. As can be observed in Fig. 5, the estimated
single-index variable β ′X exhibits a stronger interaction (in the top row), compared
to each individual covariate (in the bottom row).

To evaluate the performance of the ITRs estimated from theCSIMandMCmethods,
we randomly split the data into a training set and a testing set using a ratio of 5 to 1,
replicated 500 times, each time fitting the methods on the training set and computing
the estimated Value of the ITR by Eq. (5.1) based on the testing set. In addition
to CSIM and MC, we include the K separate additive models (K-SAM) and the K
separate linear regression (K-LR), described in Sect. 5.1, for comparison. We also
include naive decision rules that treat all patients with placebo (all PBO) only or the
active drug (all DRUG) only, as well as the CSIM and the MC methods without any
simultaneous variable selection (VS) procedure.

In Fig. 6, the proposed CSIM approach demonstrates superior performance in terms
of the estimated Values compared to all other alternatives. In particular, the CSIM
outperforms the MC and the K separate linear regressions. This suggests that the
flexible link functions gt (u) (t = 1, 2) utilized in CSIM may be better suited for
developing ITRs compared to the restricted linear form Eq. (3.9) in this example.
Another advantage of the CSIM approach is in its ability to provide a visualization
of the estimated DTRI, as depicted in the top panel of Fig. 5. Furthermore, the CSIM
approach enables the determination of the relative importance of each pretreatment
covariate in characterizing the heterogeneous treatment effect through the coefficients
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Fig. 5 Top row: A scatterplot of the responses Yi versus the estimated single-index variable β ′Xi , with the
estimated treatment-specific smooth functions; Bottom row: Scatterplots of the response variable against
each of the 4 (unscaled) pretreatment covariates, associated with the estimated nonzero coefficients of β

along with the estimated treatment-specific smooth functions overlaid
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e

Fig. 6 Boxplots of the estimated Values Eq. (5.1) of the treatment decision rules (ITRs) determined from
the 8 different approaches, obtained from 500 randomly split testing sets. Higher Values are preferred

in the estimated β vector. These coefficients reflect the contribution and significance
of each covariate in capturing the heterogeneous treatment effects.

In addition to considering the relatively small (p = 13) set of pretreatment covari-
ates setting, we considered a relative large set of pretreatment covariates case. This
depression study (Trivedi et al. 2016; Petkova et al. 2017) additionally collected pre-
treatment structural magnetic-resonance-imaging (sMRI) measures, acquired using a
Siemens (Erlangen, Germany) MAGNETOM Prisma 3T scanner with a 64-channel
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head coil, along with clinical measures (we refer to Trivedi et al. (2016); Almeida et al.
(2018) for acquisition details). Among the n = 166 subjects originally considered,
n = 103 subjects had available baseline sMRI measures. The average cortical thick-
ness, processed using FreeSurfer (Fischl 2012), of the 148 regions (74 regions per
hemisphere) defined by the Destrieux Atlas (Destrieux et al. 2010), was considered as
additional pretreatment covariates. This yielded p = 161 (including the 13 baseline
clinical measures in Table 1) for n = 103 subjects. CSIM selected “Age at evaluation”
and “Flanker Accuracy”, with coefficients 1 and −0.06, respectively. None of the
cortical thickness measures were selected as treatment effect-modifiers. MC selected
three variables, “Age at evaluation,” “Symptom severity,” and “Flanker Accuracy,”
with coefficients 0.92, 0.12 and −2.09, respectively. In Figure A1 in Appendix A7,
we report the boxplots of the estimatedValues Eq. (5.1) of the ITRs (derived from the 4
methods [CSIM, MC, K-LR, K-SAM] and the two naive rules [All PBO, All DRUG],
obtained from 500 randomly split testing sets. The results indicate that CSIM exhibits
superior performance in this higher dimensional setting, similar to the results in Fig. 6.
The mean (SD) computation times (in seconds on the training sets) for CSIM, MC, K-
LR, and K-SAM are 9.01 (3.61), 0.48 (0.05), 0.24 (0.03), and 1.50 (0.16), respectively,
with CSIM exhibiting longer computation times but still manageable. CSIM can better
capture the nonlinear trend in the association between the active drug response and
the covariate “Age at evaluation” (see the second row in Fig. 5) in comparison to the
linear model-based approaches (MC and K-LR), while achieving more targeted mod-
eling for the X-by-T interaction effect than the K separate additive models (K-SAM),
exhibiting superior ITR estimation performance.

7 Discussion

Dimension reduction plays a crucial role in various statistical methods, particularly in
regression analysis. It is closely linked to the concept of sufficiency, which explains
the relationship between a response variable and a set of predictors through a lower-
dimensional subspace in the predictor space. This paper focused on a dimension
reduction framework tailored to capturing interaction effects between a variable of
interest (T ) and a set of predictors X . Specifically, the analysis concentrated on a
single-index approximation with R(X) = β ′X ∈ R for these subspaces, as this single
index approximation is related to linear model-based methods. Future work will focus
on generalizations with more general multiple-indices, R(X) = B′X ∈ R

q with
B′B = Iq for subspaces sufficient for modeling X-by-T interaction effects, while
avoiding the need to specify the X main effect, as in the framework Eq. (4.1).

In this paper, we focused on the context of an RCT where the treatment Ti ∈
T is randomized independently of pretreatment characteristics Xi . However, the
method can be potentially extended to the case where the treatment assignment
depends on Xi . To estimate individual treatment effects with observational or
non-fully randomized data, we can take a “propensity method” (see, e.g., Imbens
and Rubin 2015; Caron et al. 2022) upon taking an appropriate reparametriza-
tion of the proposed model, which we describe below for a more general context
in which the treatment Ti takes a value t ∈ {1, . . . , K } with probability (i.e.,
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propensity score) P(Ti = t |Xi ) = πt (Xi ) (t = 1, . . . , K ). Let t = 1 be
the reference (control) treatment. For each fixed β, the constraint in Eq. (4.1),
i.e., ETi [g(β ′Xi )|Xi ] = ∑K

t=1 gt (β
′Xi )πt (Xi ) = 0, is equivalent to the equality,

g1(β
′Xi ) = −∑K

t=2 gt (β
′Xi )

πt (Xi )
π1(Xi )

. Directly incorporating this constraint into the

modeling component in Eq. (4.1), i.e., gTi (β
′Xi ) = ∑K

t=1 I(Ti=t)gt (β
′Xi ), we can

reparametrize gTi (β
′Xi ) = ∑K

t=2 gt (β
′Xi )wt (Ti , Xi ), in terms of the K − 1 uncon-

strained functions gt (·) (t = 2, . . . , K ), where wt (Ti , Xi ) = I(Ti=t) − πt (Xi )
π1(Xi )

I(Ti=1).
The propensity score πt (Xi ) is incorporated through the subject i- and treat-
ment t-specific weight wt (Ti , Xi ), and this reparametrized term gTi (β

′Xi ) is set
to satisfy the constraint in Eq. (4.1), since E[wt (Ti , Xi )|Xi ] = 0, indicating that
E[gTi (β ′Xi )|Xi ] = E[∑K

t=2 gt (β
′Xi )wt (Ti , Xi )|Xi ] = ∑K

t=2 gt (β
′Xi )E[wt (Ti , Xi )

|Xi ] = 0, which ensures the orthogonality against the unspecified term μ(Xi ) in Eq.
(2.6), thereby bypassing the need to specify μ(·) in optimizing β. In the context of an
observational or a non-fully randomized study, we can proceed as follows. For each
fixed β, we can define the design matrix D̃β = [ D̃β,2; . . . ; D̃β,K ] ∈ R

n×d(K−1),
where each t-specific matrix D̃β,t ∈ R

n×d (t = 2, . . . , K ) is the evaluation matrix
of the basis ψ(·) ∈ R

d on {β ′xi }ni=1 (as in Sect. 4.1) but multiplied by the subject i-

and treatment level t-specific weight wi t = wt (ti , xi ) = I(ti=t) − πt (xi )
π1(xi )

I(ti=1), so that
its i th row corresponds to the 1× d vector, wi tψ(β ′xi )′. The spline coefficient vector
θ̃ ∈ R

d(K−1) associated with the design matrix D̃β is then estimated as in Sect. 4.1,
which yields the estimate of the component ĝTi (β

′Xi ) (i = 1, . . . , n) used in the
criterion function Q̂(β) in Eq. (4.5), and the same sparse estimation procedure as in
Sect. 4.4 can be employed to optimize β.

Future work in refining and developing the proposed approach will investigate the
theoretical properties of the estimation procedure. Furthermore, we can consider a
generalization of the quadratic loss Eq. (4.1) to E

[
YgT (β ′X) − b(gT (β ′X))

]
subject

to the constraint E[gT (β ′X)|X ] = 0, where b(s) = s2/2 for a Gaussian Y (for which
the optimization Eq. (4.1) is a special case), b(s) = log{1 + exp(s)} for a Bernoulli
Y , and b(s) = exp(s) for a Poisson Y , in which the constrained working model cor-
responds to h(E[Y |X, T ]) ≈ gT (β ′X) with the constraint E[gT (β ′X)|X ] = 0,
where h(·) is the canonical link associated with the assumed exponential family
distribution. This constraint E

[
gT (β ′X)|X] = 0 will ensure the criterion function,

E
[
YgT (β ′X) − b(gT (β ′X))

] = E
[{

μ∗(X) + g∗
T (β∗�X)

}
gT (β ′X) − b(gT (β ′X))

]

= E
[
g∗
T (β∗�X)(gT (β ′X) − b(gT (β ′X))

]
, to be free of the unspecified X “main”

effect termμ∗(X), and thus, the optimizing component gT (β ′X)will target at the true
“signal” component g∗

T (β∗�X) that is orthogonal to the nuisance component μ∗(X).
However, a thorough analysis is warranted particularly in terms of the theoretical
development on the estimation and variable selection consistency.

Of note, directly extending Radchenko (2015)’s theoretical results to our context
is not feasible due to (i) treating predictors as deterministic (which is not the case
in our setting, where the treatment indicators are nost considered fixed); and (ii) the
assumption of correctly specified single-index models. Radchenko (2015)’s theoreti-
cal results are based on an empirical process approach to the asymptotics of nonlinear
least-squares estimation to obtain the stochastic bound for the regression function
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estimate. The main challenge in the theoretical development arises from the general
misspecification of the working model, Y ≈ gT (β ′X) + ε. The working model is
an approximation due to the omission of the unspecified term μ∗(X) present in the
underlying model. In the case of such a misspecified working model, establishing the
consistency of the estimators requires conducting asymptotic analysis using ideas from
semiparametric M-estimation, similar to the approaches in Ichimura and Lee (2010);
Wang and Yang (2009), dealing with semiparametric least squares estimation under
model misspecification. More specifically, to achieve consistency, one needs to estab-
lish the estimation consistency for the function, g∗

T (β ′X) = E[Y |β ′X, T ]−E[Y |β ′X]
in Eq. (4.6), where its component E[Y |β ′X, T ] is defined as the best L2 approxima-
tion based on a measurable function of (β ′X, T ) to the response Y , rather than as
an exact model given (β ′X, T ). This involves obtaining uniformly consistent (spline)
estimators of the conditional expectationsE[Y |β ′X, T ] andE[Y |β ′X] (uniformly over
β ∈ �) using the idea considered in Wang and Yang (2009). Once these uniformly
consistent estimators are obtained, the next step is to establish the consistency of the
estimators of the projection directions β, given the other model components, i.e., gt
(t ∈ {1, . . . , K }). However, addressing the high dimensionality of the coefficient vec-
tor β adds significant complexity to the already challenging problem of developing
a semiparametric estimation theory under model misspecification for the constrained
estimation framework in Eq. (4.1). This will entail a significant amount of additional
work, and we leave the theoretical investigation of the estimation consistency for the
model components as future work.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-024-01546-0.
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