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In Section S.1, we provide proof of Theorem 1 of the main manuscript, and Section S.2 provides

the supplementary information referenced in Section 3.1 of the main manuscript. In Section S.3,

we report the supplementary simulation results referenced in Section 4.1 of the main manuscript.

In Section S.4, we consider the variable selection performance when there is no interaction effect

between treatment and pretreatment covariates. In Section S.5, we provide additional simulation

results supplemental to the results reported in Section 4.2 of the main manuscript. In Section S.6,

we consider the computation time for the proposed regression approach.
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S.1. Proof of Theorem 1

Proof. The squared error criterion on the right-hand side of (2.6) of the main manuscript is

E
[{
Y −

p∑
j=1

gj,A(Xj)
}2] ∝ E

[
Y

p∑
j=1

gj,A(Xj)−
{ p∑
j=1

gj,A(Xj)
}2
/2

]
(with respect to {gj})

= E
[{
µ∗(X) +

p∑
j=1

g∗j,A(Xj)
} p∑
j=1

gj,A(Xj)−
{ p∑
j=1

gj,A(Xj)
}2
/2

]

= E
[
µ∗(X)

p∑
j=1

gj,A(Xj)

]
+ E

[{ p∑
j=1

g∗j,A(Xj)
}{ p∑

j=1

gj,A(Xj)
}
−
{ p∑
j=1

gj,A(Xj)
}2
/2

]

= E
[{ p∑

j=1

g∗j,A(Xj)
}{ p∑

j=1

gj,A(Xj)
}
−
{ p∑
j=1

gj,A(Xj)
}2
/2

]
,

(S.1)

where the last equality follows from the constraint E[gj,A(Xj)|Xj ] = 0 (j = 1, . . . , p) in (2.6) of the

main manuscript imposed on {gj}, and by noting E
[
µ∗(X)

∑p
j=1 gj,A

(
Xj

)]
= E

[
E
[
µ∗(X)

∑p
j=1 gj,A(Xj)|X

]]
=

E
[
µ∗(X)

∑p
j=1 E

[
gj,A(Xj)|Xj

]]
= 0. From (S.1), the squared error criterion in (2.6) of the main

manuscript can be expressed as:

argmin
{gj∈Hj}

E
[(
Y −

p∑
j=1

gj,A
(
Xj

))2]
= argmin
{gj∈Hj}

E
[( p∑

j=1

g∗j,A
(
Xj

)
−

p∑
j=1

gj,A
(
Xj

))2]
. (S.2)

In the following, we closely follow the proof of Theorem 1 in Ravikumar and others (2009). The

constrained objective function in (2.6) of the main manuscript can be rewritten in Lagrangian

form as:

Q({gj};λ) := E
[( p∑

j=1

g∗j,A(Xj)−
p∑
j=1

gj,A(Xj)
)2]

+ λ

p∑
j=1

‖gj‖ (S.3)

For the notational simplicity, let us write gj = gj,A(Xj). For each j, consider the minimization

of (S.3) with respect to the component function gj ∈ Hj , holding the other component functions

{gj′ , j′ 6= j} fixed. The stationary condition is obtained by setting its Fréchet derivative to 0.

Denote by ∂jQ({gj};λ; ηj) the directional derivative with respect to gj (j = 1, . . . , p) in the

direction, say, ηj ∈ Hj . Then, the stationary point of the Lagrangian (S.3) can be formulated as:

∂jQ({gj};λ; ηj) = 2E
[
(gj − R̃j + λνj)ηj

]
= 0, (S.4)
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where

R̃j :=

p∑
j=1

g∗j,A(Xj)−
∑
j′ 6=j

gj′,A(Xj) (S.5)

is the partial residual for gj , and νj is an element of the subgradient ∂‖gj‖, which satisfies

νj = gj/‖gj‖ if ‖gj‖ 6= 0, and νj ∈ {s ∈ Hj | ‖s‖ 6 1}, otherwise. Using iterated expectations

conditional on Xj and A, (S.4) can be rewritten as

2E
[(
gj − E

[
R̃j |Xj , A

]
+ λνj

)
ηj

]
= 0. (S.6)

Since gj − E
[
R̃j |Xj , A

]
+ λνj ∈ Hj , we can evaluate (S.4) (i.e., (S.6)) in the direction: ηj =

gj − E
[
R̃j |Xj , A

]
+ λνj , implying E

[(
gj − E

[
R̃j |Xj , A

]
+ λνj

)2]
= 0. This implies:

gj + λνj = E
[
R̃j |Xj , A

]
(almost surely). (S.7)

Let fj denote the right-hand side of (S.7), i.e., fj(= fj,A(Xj)) := E
[
R̃j |Xj , A

]
. If ‖gj‖ 6= 0, then

νj = gj/‖gj‖. Therefore, by (S.7), we have ‖fj‖ = ‖gj + λgj/‖gj‖‖ = ‖gj‖+ λ > λ. On the other

hand, if ‖gj‖ = 0, then gj = 0 (almost surely) and ‖νj‖ 6 1 which, together with condition (S.7),

implies that ‖fj‖ 6 λ. This gives us the equivalence between ‖fj‖ 6 λ and the statement gj = 0

(almost surely). Therefore, condition (S.7) leads to the following expression:

(1 + λ/‖gj‖) gj = fj (almost surely)

if ‖fj‖ > λ; otherwise, and gj = 0 (almost surely). This gives the soft thresholding update rule

for gj .

The underlying model (2.1) of the main manuscript indicates that
∑p
j=1 g

∗
j,A(Xj) = E[Y |X,A]−

µ∗(X). Thus, (S.5) can be equivalently written as: R̃j = E[Y |X,A]− µ∗(X)−
∑
j′ 6=j gj′,A(Xj′).
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Therefore, the function fj,A(Xj) = E
[
R̃j |Xj , A

]
can be written by:

fj,A(Xj) = E
[
E[Y |X,A]− µ∗(X)−

∑
j′ 6=j

gj′,A(Xj′) | Xj , A
]

= E
[
E[Y |X,A]−

∑
j′ 6=j

gj′,A(Xj′)|Xj , A
]
− E

[
µ∗(X)|Xj , A

]
= E

[
Y −

∑
j′ 6=j

gj′,A(Xj′)|Xj , A
]
− E

[
µ∗(X)|Xj

]
= E

[
Y −

∑
j′ 6=j

gj′,A(Xj′)|Xj , A
]
− E

[
µ∗(X) +

p∑
j=1

g∗j,A
(
Xj

)
|Xj

]
= E

[
Y −

∑
j′ 6=j

gj′,A(Xj′)|Xj , A
]
− E

[
Y |Xj

]
= E

[
Y −

∑
j′ 6=j

gj′,A(Xj′)|Xj , A
]
− E

[
Y −

∑
j′ 6=j

gj′,A(Xj′)|Xj

]
= E

[
Rj |Xj , A

]
− E

[
Rj |Xj

]
,

where the fourth equality follows from the identifiability constraint (2.2) of the underlying model

(2.1) of the main manuscript, and the sixth equality follows from the optimization constraint

E[gj,A(Xj)|Xj ] = 0 (j = 1, . . . , p) in (2.6) of the main manuscript imposed on {gj}; this gives the

desired expression (3.8) of the main manuscript.

�

S.2. Supplementary Materials for Section 3.1

The restriction of the function gj to the form (3.10) of the main manuscript restricts also the

minimizer g∗j in (3.7) of the main manuscript (note, g∗j,A(Xj) = s
(λ)
j fj,A(Xj), where s

(λ)
j =

[1− λ/‖fj‖]+] to the form (3.10). In particular, we can express the function fj in (3.8) of the

main manuscript as:

fj,A(Xj) = E[Rj |Xj , A]−
L∑
a=1

πaE[Rj |Xj , A = a]

= Ψj(Xj)θ
∗
j,A −Ψj(Xj)

( L∑
a=1

πaθ
∗
j,a

) (S.8)

where {θ∗j,a}a∈{1,...,L} := argmin
{θj,a∈Rdj }

E
[
{Rj −Ψj(Xj)

>θj,A}2
]
. The first term E[Rj |Xj , A] in (S.8)

corresponds to the L2 projection of the jth partial residual Rj onto the class of functions of the
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form (3.10) of the main manuscript (without the imposition of the constraint (3.11)), whereas

the second term −
∑L
a=1 πaE[Rj |Xj , A = a] centers the first term to satisfy the linear constraint

(3.11). Then it follows that fj , as given in (S.8), corresponds to the L2 projection of Rj onto the

subspace of measurable functions of the form (3.10) subject to the linear constraint (3.11) of the

main manuscript.

S.3. Supplementary Materials for Section 4.1

In this section we provide additional details on the simulation experiment reported in Section 4.1

of the main manuscript, illustrating the performance of the treatment effect-modifier selection.

The data generating model from Section 4.1 is:

Y =

10∑
j=1

cos(Xj) + g∗1,A(X1) + g∗2,A(X2) + g∗3,A(X3) + ε A ∈ {1, 2}, (S.9)

where Xj (j = 1, . . . , p), p ∈ {50, 200} are generated from independent Unif[−π/2, π/2], and the

treatment variable A ∈ {1, 2} is generated independently of X and the error term ε ∼ N (0, 0.52),

such that Pr(A = 1) = Pr(A = 2) = 1/2. We set g∗1,A(X1) = (A − 1.5)X1, g∗2,A(X2) = (A −

1.5)
{
I(X261.3)0.05e(X2−1.3) + I(X2>1.3)e

4(X2−1.3) − 1
}

and g∗3,A(X3) = (A − 1.5)
{

2e−X
2
3 − 1

}
,

which are displayed in Figure S.1, given the treatment condition A = 2.

Fig. S.1. Given the treatment a = 2, the three component functions g∗1,a(x1) = (a−1.5)x1, g∗2,a(x2) = (a−
1.5)

{
I(x261.3)0.05e(x2−1.3) + I(x2>1.3)e

4(x2−1.3) − 1
}

and g∗3,a(x3) = (a− 1.5)
{

2e−x2
3 − 1

}
are displayed.
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For a fixed A, the 1st component function g∗1,A(X1) is a linear function indicating that the

treatment effect varies linearly with X1; the 2nd component function g∗2,A(X2) is a monotone

piece-wise exponential function indicating that the treatment effect varies monotonically but

non-linearly with X2; the 3rd component function g∗3,A(X3) is a Gaussian function indicating

that the treatment effect non-monotonically varies with X3. See Figure S.1 for the graphs of the

component functions.

There were 3 “signal” covariates (X1, X2 andX3) and p−3 “noise” covariates (X4, X5, . . . , Xp).

Figure 1 of the main manuscript summarizes the results of the treatment effect-modifier selection

performance with respect to the true/false positive rates (the left/right two panels, respectively)

for p ∈ {50, 200} under setting (S.9), comparing the proposed additive regression to the linear

regression approach, which are reported as the averages (and ±1 standard deviation bars around

the averages) across the 200 simulation runs.
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Fig. S.2. The proportions of each individual covariate (X1, X2 and X3, respectively) correctly selected
(i.e., the “true positives”) under setting (S.9), as the sample size n varies from 100 to 1000, for each
p ∈ {50, 200}.
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In addition, we have examined the true positive rates reported in Figure 1 of the main

manuscript, by separately displaying the true positive rates associated with selection of X1,

X2 and X3 (respectively). Figure S.2 displays those individual true positive rates for the case of

p = 50 in the top panels and p = 200 in bottom panels. (Note, both the p = 50 and p = 200 cases

appear to be qualitatively similar.)

In the left panels of Figure S.2, with n increasing, both of the additive and linear approaches

tend to easily identify X1 as a treatment effect-modifier, since g∗1,a is a linear function (see the left

panel of Figure S.1). In the middle panels of Figure S.2, although the true positive rate of both

methods associated with selection of X2 increase with sample size n, the more flexible additive

regression approach significantly outperforms the linear regression approach (see the middle panel

of Figure S.1 for the shape of the associated component function, g∗2,a(X2)).

Although not displayed in Figure S.2, when p = 50 and n = 2000, the true positive rate

associated with selection of X2 was 0.93 (sd: 0.25) for the additive regression, and 0.74 (sd: 0.43)

for the linear regression; when p = 200 and n = 2000, it was 0.86 (sd: 0.34) for the additive

regression, and 0.64 (sd: 0.48) for the linear regression. Overall, the additive regression approach

significantly outperforms the linear regression approach in terms of correctly identifying X2 as

a treatment effect-modifier. (Note, the contribution of g∗2,A(X2) to the variance of Y is much

smaller than those of the components g∗1,A(X1) and g∗3,A(X3), and therefore correctly identifying

X2 as a treatment effect-modifier is more difficult compared to that of X1 or X3.)

In the right panels of Figure S.2, the proposed additive regression clearly outperforms the

linear regression, in terms of correctly selecting X3 which has a nonlinear and non-monotone

association with the treatment effect (see the right panel of Figure S.1 for the shape of the

associated component function, g∗3,a(X3)).
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S.4. Variable selection performance when there is no A-by-X interaction effect

In this section, we consider a null case, i.e., one without any A-by-X interactions. To consider

such a null case of no A-by-X interaction effects on Y , we perform a set of simulations using the

data generating model (S.9), but without the A-by-X interaction effect components g∗1,A(X1),

g∗2,A(X2) and g∗3,A(X3). Since there is no “signal” covariates in such a “null” case, we shall only

report the “false positive” rates (i.e., the proportions out of the p covariates incorrectly selected

as treatment effect-modifiers) associated with the considered selection approaches.

In particular, to examine the performance behavior, we also include a p = 10 case, in which all

the 10 covariates are related to the outcome Y , but none of them is related as a treatment effect-

modifier (thus, there is no “signal” covariate). In Figure S.3, we report the selection performance

given each case p ∈ {10, 20, 50, 200}, as we vary the sample size n from n = 100 to n = 1000.

(Note also, when p is large, the false positive rates tend to be relatively small, since the number

of incorrectly selected covariates is divided by the total number of the covariates p.)
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Fig. S.3. The proportion of the p irrelevant covariates (i.e., X1, X2, . . . , Xp) incorrectly selected (i.e., the
“false positives”) (and ±1 standard deviation bars) obtained from 200 simulation runs, as the sample
size n varies from 100 to 1000, for each p ∈ {10, 20, 50, 200}.

In Figure S.3, when p = 10 (the left panel), both the additive and linear model approaches

have false positive rates of 12% approximately, i.e., about 88% of the 10 covariates exhibiting the

main effect (and no interactions with A) only is correctly unselected. The false positive rates of

the both selection approaches are also relatively small, for the other cases of p = 20, 50 and 200.
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S.5. Supplementary Materials for Section 4.2

S.5.1 Simulation results for a larger p and n

For the “moderately-nonlinear” A-by-X interaction effect scenario, we have also considered the

case with a larger number of covariates (p = 100) and sample size (n = 1000) in addition to the

cases with n ∈ {250, 500}. The simulation results are shown in Figure S.4.
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Fig. S.4. Boxplots based on 100 simulation runs, comparing the 4 approaches to estimating Dopt, with

respect to the (normalized) value V (D̂opt)−V (Dopt), given each scenario indexed by ξ ∈ {0, 1}, δ ∈ {1, 2}
and a varying sample size n ∈ {250, 500, 1000}, for the moderately-nonlinear A-by-X interaction effect
case. The dotted horizontal line represents the optimal value corresponding to Dopt.

The results remain basically the same, in this increased number of covariates and sample size

setting, as in the ones appearing in Figure 2 of the main manuscript. The additive model either

performs at a similar level compared to the linear model or outperforms the linear model.
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S.5.2 Simulation results for a linear A-by-X interaction effect scenario

In this subsection, as an extension of the simulation example in Section 4.2 of the main manuscript,

we consider a case where the treatment effect varies linearly in the covariates, i.e., a “linear” A-by-

X interaction effect scenario and assess the ITR estimation performance of the methods. Again,

we generate a vector of covariates X = (X1, . . . , Xp)
> ∈ Rp (p = 50) based on a multivariate

normal distribution with each component having the marginal distribution N (0, (π/2)2) with the

correlation between the components corr(Xj , Xk) = 0.1|j−k|. Given the same parametrization

of the data model with δ ∈ {1, 2} and ξ ∈ {0, 1} as in Section 4.2 of the main manuscript, we

generate the response Y from:

Y = δ

5∑
j=1

sin(Xj) + (A− 1.5)
{
X1 −X2 + ξX1X2

}
+ ε A ∈ {1, 2}, (S.10)

where the treatment variable A ∈ {1, 2} is generated independently from the covariates X and

the error term ε ∼ N (0, 0.52), such that Pr(A = 1) = Pr(A = 2) = 1/2. For each combination

of n ∈ {250, 500}, ξ ∈ {0, 1} and δ ∈ {1, 2}, we perform 100 simulation runs and compare the

four approaches considered in the main manuscript. In Figure S.5, as in the simulation example

of Section 4.2 of the main manuscript, we report the performance of the four approaches to

estimating Dopt in terms of the (normalized) value V (D̂opt)− V (Dopt).
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Fig. S.5. Boxplots based on 100 simulation runs, comparing the 4 approaches to estimating Dopt, given
each scenario indexed by ξ ∈ {0, 1}, δ ∈ {1, 2} and n ∈ {250, 500}, for the “linear” A-by-X interaction
effect case. The dotted horizontal line represents the optimal value corresponding to Dopt.
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When ξ = 0 (i.e., when the linear interaction model is correctly specified), the linear regression

outperforms the additive regression, but not much, whereas if the underlying model deviates

from the exact linear structure (i.e., ξ = 1 in model (S.10)) and n = 500, the more flexible

additive model tends to outperform the linear model. Given the outstanding performance of the

additive model compared to the linear model in the nonlinear A-by-X interaction effect scenarios

considered in the main manuscript, this result suggests that, in the absence of prior knowledge

about the form of the interaction effect, flexible modeling of the interaction effect using the

proposed additive regression can lead to good results in comparison to the linear regression.

S.5.3 Comparison of OWL (FT) and OWL with only feature selection (FS) conducted

We have additionally considered the OWL with only feature selection (FS) conducted (i.e., with-

out any specific feature transformation), which we denote as OWL (FS). As in OWL (FT), we

use the proposed additive regression for conducting variable selection (i.e., feature selection);

however, unlike OWL (FT), we do not perform the transformation Xj 7→ g∗j,1(Xj) on the selected

features. For OWL (FS), the selected features, among {X1, X2, . . . , Xp}, are used as inputs to

the OWL.

We consider the same simulation setting (with p = 50) as in Section 4.2 of the main manuscript

(see Figure 2 of the main manuscript for the results), but for the clarity of presentation, we focus

on the δ = 2 case (the case with δ = 1 is qualitatively similar). The results are shown in Figure S.6.
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Fig. S.6. Boxplots based on 100 simulation runs, comparing: 1) additive model; 2) linear model; 3) OWL
(FT); and 4) OWL (FS), given each scenario indexed by ξ ∈ {0, 1} and n ∈ {250, 500} (and δ = 2),
for the highly-nonlinear A-by-X interaction effect case in the top panels and the moderately-nonlinear
A-by-X interaction effect case in the bottom panels.

The results in Figure S.6 indicate that OWL (FT) significantly improves OWL (FS) in the

ITR estimation performance. This is especially true when the underlying data model is relatively

more complex (i.e., when ξ = 1, in comparison to the case when ξ = 0). When ξ = 1, OWL (FT)

generally outperforms the additive model; on the other hand, OWL (FS), which does not perform

any feature transformation on the selected features, is often outperformed by the additive model.

This suggests that the data-driven feature transformation via the component functions, g∗j , of

the proposed additive model can lead to useful representations for the input data used in OWL,

particularly when the underlying model is complex.
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S.5.4 Simulation results for a case where there is a relatively large number of active treatment

effect-modifiers but with treatment small effect-modifications

We have performed a set of simulation experiments under a setting similar to the setting (S.10),

with δ = 1 and ξ = 0 (with p = 50), but using a relatively large number of nonzero A-by-X

component functions (30 nonzero component functions associated with the A-by-X interaction

effect): Y =
∑5
j=1 sin(Xj) + (A− 1.5)

∑30
j=1

e5Xj

1+e5Xj
(−1)j + ε. Although in this setting there were

30 covariates that modify the treatment effect, the magnitude of each covariate’s modifying effect

was set to be only one-fourth of that of X1 (or X2) of the setting (S.10), and therefore each of

these 30 treatment effect-modifiers had a relatively small treatment modifying effect.
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Fig. S.7. Boxplots based on 100 simulation runs given each scenario n ∈ {250, 500, 1000}, comparing the

4 approaches to estimating Dopt, with respect to the (normalized) value V (D̂opt)− V (Dopt).

The results are given in Figure S.7. The results illustrate that, as the sample size increases

from n = 250 to n = 500 and n = 1000, the performance level of the proposed additive model

approaches the optimal performance. In particular, the relative advantage of using the additive

model to the linear model is more prominent in comparison to the results reported in Fig-

ure 2 of the main manuscript, where there were only 2 active treatment effect-modifiers (see the

“moderately-nonlinear” interaction effect scenario with ξ = 0 in Figure 2 of the main manuscript).

The additive model-based feature-transformed OWL (i.e., OWL (FT)) outperforms the original
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OWL as well as the linear model. On the other hand, the additive model outperforms the OWL

(FT), which is not surprising, since the A-by-X interaction effect structure is of an “additive”

form.

We further note that, in the binary treatment (L = 2) case, the proposed additive model-

ing approach can be viewed as creating an optimal 1-dimensional data-driven index h(X) =∑p
j=1 ĝ

∗
j,1(Xj) (see Figure 5 of the main manuscript) that can be used to determine an optimal

treatment decision. The index is an additive combination of the p baseline covariates, that acts

as a composite treatment effect-modifier that collectively exhibits a stronger, and possibly non-

linear, interaction effect with the treatment. In such situations where there are potentially many

treatment effect-moderators that individually contribute little, combining multiple biomarkers

to generate a single, stronger composite treatment effect-modifier (as is done in the proposed

additive model approach) is a clinically significant endeavor to optimizing treatment decisions.

S.6. Computation time

In Figure S.8, the computation time of the proposed additive regression approach implemented

through the R-package samTEMsel (Park and others, 2020) is compared to that of the linear

regression (MC) approach implemented through the R-package glmnet (Friedman and others,

2010). Even when p = 200 and n = 500, implementation of the proposed approach, including

a 10-fold cross-validation, can be done within about 3 seconds. This is in sharp contrast to the

computation time of the outcome-weighted learning considered in this paper, which is at least

on the order of several minutes. (The computation time is measured on a MacBook computer

running 64-bit, 2.5 GHz Intel Core i7, with 16 GB random access memory, and we report the

average over 200 simulation runs.)
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Fig. S.8. The averaged computation time (in seconds) (including the time to conduct 10-fold cross-
validations for choosing the sparsity tuning parameters) with a varying n ∈ {100, 200, 300, 400, 500} and
p ∈ {50, 100, 200}, comparing the proposed sparse additive regression approach to the lasso-based linear
regression approach.

One observation from Figure S.8 is that for the additive model, the computation time tends

to increase linearly with n, whereas the computation time stays relatively flat with respect to n

for the linear model. The major difference between these two approaches comes from a fact that

the additive model needs to represent each observation in terms of a (spline) basis whereas the

linear model does not involve such basis expansion/evaluation. The computation time for such a

process typically scales linearly with the training sample size n.
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