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Abstract

We provide proofs for the theoretical results presented in the main manuscript of the paper in Web
Appendix A, and additional numerical examples including an illustration of the proposed regression
approach to a L = 3 treatment level scenario and comparisons to the doubly robust estimation approach
to optimizing individualized treatment rules in Web Appendix B.

Web Appendix A: Technical details of mathematical results

A.1. Proof of Proposition 1

In the main manuscript, we assume Y = E[Y |X, T ] + ε, in which ε is a zero-mean independent noise with
finite variance and

E[Y |X, T = t] = µ(X) + ft(α>0 X) (t = 1, . . . , L), (S.1)

where we assume, without loss of generality, E[fT (α>0 X)|X] =
∑L
t=1 πtft(α>0 X) = 0, for an identifiable

representation of (S.1) and α0 ∈ Θ = {α = (α1, . . . , αp)> ∈ Rp : ‖α‖ = 1, α1 > 0}. To estimate the
components ft(α>0 X) (t = 1, . . . , L) of model (S.1), we utilize the following working model

E[Y |X, T = t] ≈ gt(α>X) (t = 1, . . . , L), (S.2)

for some α ∈ Θ, subject to the constraint on the treatment-specific smooth link-functions (g1, . . . , gL):

E[gT (α>X) |X] =
L∑
t=1

πtgt(α>X) = 0 (almost surely), (S.3)

for all α ∈ Θ.

In a least squares framework of optimizing model (S.2), argmin
α,(g1,...,gL)

E
[
(Y − gT

(
α>X))2]/2 =

0To whom correspondence should be addressed; parkh15@nyu.edu
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argmax
α,(g1,...,gL)

E
[
Y gT (α>X)− g2

T (α>X)/2
]
, in which

E
[
Y gT (α>X)− g2

T (α>X)/2)
]

= E
[
(µ(X) + fT (α>0 X))gT (α>X)− g2

T (α>X)/2
]

= E
[
E
[
µ(X)gT (α>X) + fT (α>0 X)gT (α>X)− g2

T (α>X)/2 |X
]]

= E
[
E
[
fT (α>0 X)gT (α>X)− g2

T (α>X)/2 |X
]]

= E
[ L∑
t=1

πt
{
ft(α>0 X)gt(α>X)− g2

t (α>X)/2
}]

=
L∑
t=1

πtE
[
E
[
ft(α>0 X)gt(α>X)− g2

t (α>X)/2 | α>X
]]

=
L∑
t=1

πtE
[
E
[
ft(α>0 X) | α>X

]
gt(α>X)− g2

t (α>X)/2
]
,

where the third line follows from the constraint (S.3) imposed on (g1, . . . , gL). For the notational simplicity,
let us write Q(g1, . . . , gL,α) = E

[
Y gT (α>X)− g2

T (α>X)/2)
]
. Conditioning on X and for a fixed α, we

have
∂Q(g1, . . . , gL,α)

∂gt
= E

[
ft(α>0 X) | α>X

]
− gt(α>X) (t = 1, . . . , L). (S.4)

Therefore, the stationary point of Q(g1, . . . , gL,α), for each fixed α, can be formulated as:

gt(α>X) = E
[
ft(α>0 X) | α>X

]
(t = 1, . . . , L) (almost surely). (S.5)

Since ft(α>0 X) = E[Y |X, T = t] − µ(X) by the true model (S.1), the right-hand side of (S.5) can be
expressed as, for each t = 1, . . . , L,

gt(α>X) = E
[
E[Y |X, T = t]− µ(X) | α>X

]
= E

[
E[Y |X, T = t] | α>X

]
− E

[
µ(X) | α>X

]
= E

[
E[Y |X, T = t] | α>X, T = t

]
− E

[
µ(X) | α>X

]
= E

[
Y | α>X, T = t

]
− E

[
µ(X) + fT (α>0 X) | α>X

]
= E

[
Y | α>X, T = t

]
− E

[
Y | α>X

]
,

(S.6)

where the fourth line follows from: E
[
fT (α>0 X) | α>X

]
= E

[
E[fT (α>0 X)|X] | α>X

]
= 0, which comes

from the identifiability condition of model (S.1). Expression (S.6) gives the desired result of Proposition 1.

A.2. Derivation of the approximate solutions for the t-specific functions gt

Given a n×d matrixD, let us use S(D) to denote the linear subspace (in Rn) spanned by the columns ofD. Let
us define the vector spaces: Vt := S(D(t)

α ) (t = 1, . . . , L), V0 := S(D(0)
α ) and V := S(D(1)

α , . . . ,D
(L)
α ), where

the matrices D(t)
α (t = 1, . . . , L) and D(0)

α are defined in the main manuscript. Note that V = V1 ⊕ · · · ⊕ VL.
Therefore, PV (Y ) =

∑L
t=1 PVt

(Y ), if we use PV : Rn → V to denote the projection operator onto V ,
defined in Rn. On the right-hand side of (S.6) (that is, the right-hand side of expression (7) of the main
manuscript), the second term −E

[
Y |α>X

]
amounts to removing the main effect of α>X that corresponds

to the subspace V0 in Rn. We can decompose Rn as Rn = V ⊥0 ⊕ V0, where V ⊥0 denotes the orthogonal
perpendicular subspace of V0. Accordingly, using the least squares projection, we can decompose the vector
Y ∈ Rn of the observed outcomes as: Y = PV ⊥0 (Y ) +PV0(Y ) = PV (PV ⊥0 (Y )) +PV ⊥(PV ⊥0 (Y )) +PV0(Y ) =∑L
t=1 PVt(PV ⊥0 (Y )) + PV ⊥(PV ⊥0 (Y )) + PV0(Y ). The first term of the decomposition,

∑L
t=1 PVt(PV ⊥0 (Y )),

correspond to projecting Y on to the subspace V ⊥0 ∩V , which is the subspace representing the right-hand side
of (S.6) in Rn, in two steps: 1) projecting Y on V ⊥0 , and 2) projecting the projection on V . Since PV ⊥0 (Y ) =
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(
In −D(0)

α (D(0)>
α D

(0)
α )−1D

(0)>
α

)
Y and PVt

(PV ⊥0 (Y )) = D
(t)
α (D(t)>

α D
(t)
α )−1D

(t)>
α PV ⊥0 (Y ), the right-hand

side of (S.6) can be represented in Rn by D(t)
α (D(t)>

α D
(t)
α )−1D

(t)>
α

(
In −D(0)

α (D(0)>
α D

(0)
α )−1D

(0)>
α

)
Y (t =

1, . . . , L). This gives expression (10) of the main manuscript for the approximation functions (g1, . . . , gL).

A.3. Proof of Theorem 1 and 2 and Corollary 1

Under model (S.1),

E
[
Y | α>X, T = t

]
= E

[
µ(X) | α>X, T = t

]
+ E

[
fT (α>0 X) | α>X, T = t

]
(t = 1, . . . , L)

= E
[
µ(X) | α>X

]
+ E

[
ft(α>0 X) | α>X

]
(t = 1, . . . , L)

(S.7)

By the second line in (S.7), we can write

E
[
ft(α>0 X) | α>X

]
= E

[
Y | α>X, T = t

]
− E

[
µ(X) | α>X

]
(t = 1, . . . , L)

= E
[
Y | α>X, T = t

]
− E

[
µ(X) + fT (α>0 X) | α>X

]
(t = 1, . . . , L)

= E
[
Y | α>X, T = t

]
− E

[
Y | α>X

]
(t = 1, . . . , L)

= g∗∗α,t(α>X)− g∗α(α>X) (t = 1, . . . , L)

(S.8)

where the second equality follows from the identifiability condition on (f1, . . . , fL) in model (S.1), and
the last line from the definitions of g∗∗α,t and g∗α (see Assumption 5). For each fixed α ∈ Θ, let us define
the functions fα,t(α>X) := g∗∗α,t(α>X) − g∗α(α>X) (t = 1, . . . , L), which, if α = α0, reduce to the true
link functions ft(α>0 X) (t = 1, . . . , L) of model (S.1). Under Assumption 3, u = α>X is bounded, and
without loss of generality, we assume the domain of these functions to be [0, 1]. For the functions g∗∗α,t(u)
and g∗α(u), we introduce the associated estimators ĝ∗∗α,t(u) = Bt(u)>(D(t)>

α D
(t)
α )−1D

(t)>
α Y (t = 1, . . . , L)

and ĝ∗α(u) = B0(u)>(D(0)>
α D

(0)
α )−1D

(0)>
α Y , respectively, and let f̂α,t(u) := ĝ∗∗α,t(u)− ĝ∗α(u) (t = 1, . . . , L),

u ∈ [0, 1]. Note, for each fixed α, these estimators f̂α,t (t = 1, . . . , L) correspond to the approximation
functions gt (t = 1, . . . , L) that appear in (10) of the main manuscript.

Under Assumptions 1–4 of the main manuscript, by Proposition A.1 in the Supplementary Material of Wang
and Yang (2009), we have

sup
α∈Θ

sup
u∈[0,1]

∣∣ĝ∗∗α,t(u)− g∗∗α,t(u)
∣∣ = O(n−1/2

t d
1/2
t lognt + d−4

t ) (t = 1, . . . , L), (S.9)

almost surely. Similarly, under Assumptions 1–4 of the main manuscript, by Proposition A.1 in the
Supplementary Material of Wang and Yang (2009), we have

sup
α∈Θ

sup
u∈[0,1]

|ĝ∗α(u)− g∗α(u)| = O(n−1/2d
1/2
0 logn+ d−4

0 ), (S.10)

almost surely.

Then, (S.9) and (S.10) entail that

sup
α∈Θ

sup
u∈[0,1]

∣∣∣f̂α,t(u)− fα,t(u)
∣∣∣ = O

(
n
−1/2
t d

1/2
t lognt + d−4

t + n−1/2d
1/2
0 logn+ d−4

0
)

(t = 1, . . . , L), (S.11)

almost surely. For each t = 1, . . . , L, (S.11) implies that

sup
α∈Θ

n−1
n∑
i=1

∣∣∣f̂α,t(α>Xi)− fα,t(α>Xi)
∣∣∣ 1(Ti=t) = O

(
n
−1/2
t d

1/2
t lognt+d−4

t +n−1/2d
1/2
0 logn+d−4

0
)

(S.12)
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and

sup
α∈Θ

n−1
n∑
i=1

{
f̂α,t(α>Xi)−fα,t(α>Xi)

}21(Ti=t) = O
{(
n
−1/2
t d

1/2
t lognt+n−1/2d

1/2
0 logn

)2+
(
d−4
t +d−4

0
)2}

,

(S.13)
almost surely.

Let us denote the empirical criterion function as Q̂(α) := n−1∑n
i=1
(
Yi−f̂α,Ti(α>Xi)

)2 = n−1∑n
i=1
(
µ(Xi)+

εi + fTi
(α>0 Xi)− f̂α,Ti

(α>Xi)
)2, and consider the decomposition:

Q̂(α) =n−1
n∑
i=1

(
µ(Xi) + εi + fTi

(α>0 Xi)− fα,Ti
(α>Xi) + fα,Ti

(α>Xi)− f̂α,Ti
(α>Xi)

)2
=n−1

n∑
i=1

(µ(Xi) + εi)2 + n−1
n∑
i=1

(
fTi

(α>0 Xi)− fα,Ti
(α>Xi)

)2
+n−1

n∑
i=1

(
fα,Ti(α>Xi)− f̂α,Ti(α>Xi)

)2 + 2n−1
n∑
i=1

(
µ(Xi) + εi

)(
fTi(α>0 Xi)− fα,Ti(α>Xi)

)
+2n−1

n∑
i=1

(
µ(Xi) + εi + fTi(α>0 Xi)− fα,Ti(α>Xi)

)(
fα,Ti(α>Xi)− f̂α,Ti(α>Xi)

)
.

Let us denote the corresponding population criterion function by Q(α) := E[(Y −fα,T (α>X))2] = E[(µ(X)+
fT (α>0 X) + ε− fα,T (α>X))2] = E[(µ(X) + ε)2 + (fT (α>0 X)− fα,T (α>X))2 + 2(µ(X) + ε)(fT (α>0 X)−
fα,T (α>X)]. Then, we can write

sup
α∈Θ

∣∣∣Q̂(α)−Q(α)
∣∣∣ ≤ I1 + I2 + I3 + I4 + I5 (almost surely), (S.14)

in which

I1 = sup
α∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
fα,Ti(α>Xi)− f̂α,Ti(α>Xi)

)2∣∣∣∣∣ ,
I2 = sup

α∈Θ

∣∣∣∣∣2n−1
n∑
i=1

(
µ(Xi) + εi + fTi

(α>0 Xi)− fα,Ti
(α>Xi)

)(
fα,Ti

(α>Xi)− f̂α,Ti
(α>Xi)

)∣∣∣∣∣ ,
I3 = sup

α∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
fTi(α>0 Xi)− fα,Ti(α>Xi)

)2 − E[(fT (α>0 X)− fα,T (α>X)
)2]∣∣∣∣∣ ,

I4 = sup
α∈Θ

∣∣∣∣∣2n−1
n∑
i=1

(
µ(Xi) + εi

)(
fTi

(α>0 Xi)− fα,Ti
(α>Xi)

)
− 2E[(µ(X) + ε)(fT (α>0 X)− fα,T (α>X)]

∣∣∣∣∣ ,
I5 =

∣∣∣∣∣2n−1
n∑
i=1

(µ(Xi) + εi)2 − 2E
[
(µ(X) + ε)2]∣∣∣∣∣ .

The strong law of large numbers implies that I3 + I4 + I5 = o(1), almost surely. Also,

I1 ≤
L∑
t=1

sup
α∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
fα,Ti(α>Xi)− f̂α,Ti(α>Xi)

)21(Ti=t)

∣∣∣∣∣
=

L∑
t=1

O
{(
n
−1/2
t d

1/2
t lognt + n−1/2d

1/2
0 logn

)2 +
(
d−4
t + d−4

0
)2}

,

(S.15)
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almost surely, by (S.13). And,

I2 ≤ sup
α∈Θ

2n−1
n∑
i=1

∣∣∣fα,Ti
(α>Xi)− f̂α,Ti

(α>Xi)
∣∣∣× sup

α∈Θ
n−1

n∑
i=1

∣∣µ(Xi) + εi + fTi
(α>0 Xi)− fα,Ti

(α>Xi)
∣∣

=
L∑
t=1

O
(
n
−1/2
t d

1/2
t lognt + d−4

t + n−1/2d
1/2
0 logn+ d−4

0
)
×O(1),

(S.16)
almost surely, by (S.12) and the strong law of large numbers. Since we choose the numbers of interior knots,
dt (t = 1, . . . , L) and d0, for the cubic spline smoothing under Assumption 5 of the main manuscript, we
obtain

sup
α∈Θ

∣∣∣Q̂(α)−Q(α)
∣∣∣→ 0, (S.17)

almost surely. Now, we prove the consistency of α̂0 to α0. Denote by (Ω,F ,P) the probability space on
which all {Yi, Ti,X>i }∞i=1 are defined. By (S.17), for any δ > 0, ω ∈ Ω, there is an integer n∗(ω), such that
Q̂(α0, ω)−Q(α0) < δ/2, whenever n > n∗(ω). Since α̂0(ω) is the minimizer of Q̂(α, ω), we have Q̂(α̂0(ω), ω)−
Q(α0) < δ/2. Also, by (S.17), there exists an integer n∗∗(ω), such that Q(α̂0(ω), ω)−Q(α̂0(ω), ω) < δ/2,
whenever n > n∗∗(ω). Therefore, whenever n > max(n∗(ω), n∗∗(ω)), we have Q̂(α̂0(ω), ω)−Q(α0) < δ. The
strong consistency α̂0 → α0 follows from the local convexity of Assumption 2 of the main manuscript.

The proof of Corollary 1 follows from (S.11) that, under Assumptions 1–4 of the main manuscript,
supu∈[0,1]

∣∣∣f̂α,t(u)− fα,t(u)
∣∣∣ = O

(
n
−1/2
t d

1/2
t lognt + d−4

t + n−1/2d
1/2
0 logn + d−4

0
)
, almost surely, for each

t = 1, . . . , L, for any α ∈ Θ. Taking α = α0 and the strong consistency α̂0 → α0 (Theorem 1) imply
Corollary 1, under Assumptions 1–5 of the main manuscript.

For the proof of Theorem 2, we first note that α ∈ Θ ⊂ Rp of the working model (S.2) can be expressed
as: α(= c(φ)) = (1,φ>)>/(1 + ‖φ‖2)1/2, for a p − 1 dimensional vector φ = (φ1, . . . , φp−1)> ∈ Rp−1, as
stated in the main manuscript of the paper. Let J(φ) denote the p× (p− 1) Jacobian matrix from φ ∈ Rp−1

to α ∈ Θ, whose (i, j)th element is given by ∂αi/∂φj = −αiφj/K2, for (i = 1; j = 1, . . . , p − 1), and
∂αi/∂φj = −αiφj/K2 + 1/K, for (i = 2, . . . , p; j = 1, . . . , p− 1), in which K = (1 + ‖φ‖2)1/2. The relation
α = c(φ) is one-to-one, hence the parameter φ0 ∈ Rp−1 that corresponds to α0 ∈ Θ can be specified.

The estimator α̂0 (= c(φ̂0)) in (11) of the main manuscript corresponds to the solution of the set of score
estimating equations:

∂

∂αj
Q̂(α) = 2n−1

n∑
i=1
{f̂α,Ti

(α>Xi)− Yi}
∂

∂αj
f̂α,Ti

(α>Xi) = 0 (j = 1, . . . , p) (S.18)

subject to the identifiability constraint α ∈ Θ. In (S.18), again, f̂α,Ti
(α>Xi) = gTi

(α>Xi) for each fixed α,
where the nonparametrically-defined functions gt(·) (t = 1, . . . , L) are given by (10) of the main manuscript,
under Assumption 5 on the numbers of interior knots for the cubic spline approximation. In particular, under
Assumptions 1 and 3–5 of the main manuscript, by Lemma A.15 of Wang and Yang (2007), we have:

sup
α∈Θ

sup
1≤j≤p

∣∣∣∣∣ ∂∂αj
{
Q̂(α)−Q(α)

}
− n−1

n∑
i=1

ξα,i,j

∣∣∣∣∣ = o(n−1/2), (S.19)

almost surely, where

ξα,i,j := 2{fα,Ti
(α>Xi)− Yi}

∂

∂αj
fα,Ti

(α>Xi)−
∂

∂αj
Q(α).

Note, E[ξα,i,j ] = E
[
2{fα,Ti

(α>Xi)− Yi} ∂
∂αj

fα,Ti
(α>Xi)

]
− ∂

∂αj
Q(α) = 0, and thus ξα,i,j (i = 1, . . . , n)

are mean-zero independent random variables, for each j = 1, . . . , p. If ∂
∂αj

{
Q̂(α)−Q(α)

}
is evaluated at the
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minimum α = α0 (i.e., φ = φ0), then by the local convexity of Assumption 2, we have
{

∂
∂αj

Q(α)
} ∣∣
α=α0

= 0.
Thus, at α = α0, (S.19) gives:

sup
1≤j≤p

∣∣∣∣∣ ∂∂αj Q̂(α0)− n−1
n∑
i=1

ξα0,i,j

∣∣∣∣∣ = o(n−1/2), (S.20)

almost surely, under Assumptions 1–5. Recall for model identifiability, we restrict α ∈ Θ. By incorporating
the identifiability constraint through the “delete-one-component” reparametrization, the score estimating
equations (S.18), ∂

∂α>
Q̂(α) = 0 subject to α ∈ Θ, are written by:

n−1
n∑
i=1

Ψ̂ (Yi, Ti,Xi|φ) = 0 (S.21)

in which Ψ̂(Yi, Ti,Xi|φ) = 2J>(φ)
{
f̂α,Ti

(α>Xi)− Yi
}

∂
∂α>

f̂Ti
(α>Xi), where α = c(φ). If evaluated

at φ = φ0, the left-hand side of (S.21), i.e., n−1∑n
i=1 Ψ̂ (Yi, Ti,Xi|φ0) = 2J>(φ0) ∂

∂α>
Q̂(α0), is a lin-

ear transformation of the length-p gradient vector ∂
∂α>

Q̂(α0) =
(
∂
∂α1

Q̂(α0), ∂
∂α2

Q̂(α0), . . . , ∂
∂αp

Q̂(α0)
)>,

which is represented, up to o(n−1/2) almost surely, by a sum of mean-zero independent random vec-
tors ξα0,i :=

(
ξα0,i,1, ξα0,i,2, . . . , ξα0,i,p

)> ∈ Rp (i = 1, . . . , n), by (S.20). Cramér-Wold device and
the central limit theorem entail that n−1/2∑n

i=1 Ψ̂(Yi, Ti,Xi|φ0) converges in distribution to N (0,Σ0),
where Σ0 = J>(φ0)var

(
ξα0,i

)
J(φ0), with ξα0,i = 2

{
fTi

(α>0 Xi) − Yi
}

∂
∂α>

fTi
(α>0 Xi) = 2

{
fTi

(α>0 Xi) −
Yi
}
ḟTi

(α>0 Xi)Xi ∈ Rp. Let Ψ(Yi, Ti,Xi|φ0) := J>(φ0)ξα0,i = 2J>(φ0)
{
fTi

(α>0 Xi) − Yi
}
ḟTi

(α>0 Xi)Xi,
where α0 = c(φ0), and let A0 be the (p− 1)× (p− 1) matrix of the first derivative of E [Ψ(Yi, Ti,Xi|φ)] with
respect to φ ∈ Rp−1, evaluated at φ = φ0. Taking the first-order Taylor series expansion of the left-hand
side of the equations, n−1/2∑n

i=1 Ψ̂(Yi, Ti,Xi|φ̂0) = 0, at φ̂0 = φ0 and rearranging leads to:

n1/2(φ̂0 − φ0) = −
[

∂

∂φ>
{
n−1

n∑
i=1

Ψ̂(Yi, Ti,Xi|φ)
}∣∣∣∣
φ=φ∗

]−1

n−1/2
n∑
i=1

Ψ̂(Yi, Ti,Xi|φ0), (S.22)

where φ∗ is between φ0 and φ̂0. The uniform consistency of the observed Hessian in (S.22)
to A0 is obtained by Lemma A.15 of Wang and Yang (2007) under Assumptions 1 and 3–5,
supα∈Θ sup1≤q,j≤p

∣∣∣ ∂2

∂αq∂αj
{Q̂(α)−Q(α)}

∣∣∣ = o(1) (almost surely), and that φ̂0 → φ0 (almost surely)

implied by Theorem 1 of the main manuscript. Through Slutsky’s theorem, (S.22) implies that n1/2(φ̂0 −φ0)
converges in distribution to N (0,A−1

0 Σ0A
−1>
0 ). Then an application of the multivariate delta method with

mapping α0 = c(φ0) entails that n1/2(α̂0−α0) converges in distribution to N (0,J0A
−1
0 Σ0A

−1>
0 J>0 ), where

J0 = J(φ0).

A.4. Efficiency augmentation

As referenced in Section 3.3 of the main manuscript, in this subsection we consider an approach that is
analogous to the efficiency augmentation of Tian et al. (2014) which improves the original estimator α̂0 of
α0. We consider an augmented estimator α̂0,m for α0 of model (S.1):

α̂0,m = argmin
α∈Θ

n−1
n∑
i=1

[{
Yi − gTi

(α>Xi)
}2
/2 + gTi

(α>Xi)m(Xi)
]
, (S.23)

where the original objective function in (11) of the main manuscript (Section 3.3) is augmented by the term
n−1∑n

i=1 gTi
(α>Xi)m(Xi), in which the function m(·) : Rp 7→ R represents an arbitrary continuous function.

The strong consistency of the augmented estimator α̂0,m for α0 of model (1) in the main manuscript (i.e., of
model (S.1)) is given in the following Corollary.
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Corollary 2. Under Assumptions 1–5 in the main manuscript, α̂0,m → α0, almost surely, for any continuous
function m(·) : Rp 7→ R.

Given the consistency of the estimator α̂0,m to α0 of model (S.1), we now consider selecting an optimal
augmentation function m(·) in (S.23), where the associated augmented estimator α̂0,m may have a smaller
asymptotic variance than that of the original estimator α̂0 given in (11) of the main manuscript.

Corollary 3. Under Assumptions 1–5 in the main manuscript, the optimal choice of the function m(·) that
results in the smallest asymptotic variance of α̂0,m in (S.23) satisfies m(X) = E[Y |X], almost surely.

The proofs of Corollary 2 and 3 are given in Section A.5. Corollary 3 indicates that the optimal choice of
m(·) is the function µ(·) associated with the unspecified X main effect in the true model (S.1).

Next, we describe how to construct an augmented estimator α̂0,m. The optimal augmentation term m(X) =
E [Y |X] (= µ(X)) can be approximated by a (possibly misspecified) regression model E [Y |X] ≈ B(X)>η,
where B(X) and η are a design function and a vector of coefficients, respectively. As given by Corollary 2,
the appealing feature of α̂0,m in (S.23) is that the estimator is robust to the misspecification of the optimal
augmentation function m(X) = E [Y |X], in terms of its consistency to α0. In the special case of taking
m(X) = 0, the augmented estimator, α̂0,m, which provides a means of incorporating the term µ(X) in model
(S.1) to the estimation of α0 through a specification of m(X) in (S.23), reduces to the original estimator α̂0
in (11) of the main manuscript.

Let us use η̂ to denote an estimate for η of model E [Y |X] ≈ m(X) = B(X)>η, estimated based on the
pairs {(Yi,Xi), i = 1, . . . , n}. We can obtain an estimate η̂, before fitting the working model (S.2). Given an
estimate η̂, the objective function of (S.23) becomes:

n−1
n∑
i=1

[{
Yi − gTi(α>Xi)

}2
/2 + gTi(α>Xi)B(Xi)>η̂

]
∝ n−1

n∑
i=1

[{
Yi −B(Xi)>η̂ − gTi(α>Xi)

}2]
.

The form of the right-hand side indicates that the same iterative procedure described in Section 3.2 of the
main manuscript can be used to obtain the augmented estimator α̂0,m in (S.23), by using the residualized
responses Ỹi = Yi −B(Xi)>η̂ (i = 1, . . . , n), instead of the original responses Yi (i = 1, . . . , n).

A.5. Proofs of Corollary 2 and 3

We first prove Corollary 2. Let Q̂m(α) and Q̂(α) denote the objective functions of (S.23) and (11) in the main
manuscript, respectively. For a fixed set of the link-functions (g1, . . . , gL) satisfying (S.3), Q̂m(α) in (S.23)
converges pointwise to E

[
Q̂(α)

]
for each α ∈ Θ, almost surely, by the law of large numbers and the fact that

E
[
gT (α>X)m(X)|X

]
= m(X)E

[
gT (α>X)|X

]
= 0, almost surely, which follows from the constraint (S.3)

on (g1, . . . , gL). Furthermore, we have∥∥∥∥ ∂

∂α>
Q̂m(α)

∥∥∥∥ =
∥∥∥∥n−1

n∑
i=1

{
gTi(α>Xi) +m(Xi)− Yi

}
ġTi(α>Xi)Xi

∥∥∥∥ ≤ C (S.24)

for some constant C > 0 and large n, since X is bounded, α is in a compact set Θ, the link-functions
(g1, . . . , gL) are smooth functions with continuous second derivatives, and the function m is a continuous
function. Therefore, Q̂m(α) → E

[
Q̂(α)

]
uniformly over α ∈ Θ, almost surely, for a fixed set of the link-

functions (g1, . . . , gL) satisfying (S.3). Furthermore, E
[
Q̂(α)

]
→ Q(α) uniformly over α ∈ Θ almost surely

under Assumptions 1–5 of the main manuscript, by the uniform convergence rate (S.11) of the nonparametric
component gα,t(= f̂α,t) to fα,t. Therefore, Q̂m(α)→ Q(α) uniformly over α ∈ Θ, almost surely. By using
the same argument as in the last part of the proof of Theorem 1, we obtain α̂0,m → α0, almost surely.

Next we prove Corollary 3. The augmented estimator, α̂0,m(= c(φ̂0,m)) which appears on the left-
hand side of (S.23), can be viewed as the solution to the following augmented estimating equations:

7



n−1∑n
i=1 Ψ̂m (Yi, Ti,Xi|φ) = 0 (corresponding to the first-order condition), in which

Ψ̂m(Yi, Ti,Xi | φ) = J>(φ)
{
gTi

(α>Xi)− Yi
}
ġTi

(α>Xi)Xi + J>(φ)m(Xi)ġTi
(α>Xi)Xi

= J>(φ)
{
gTi

(α>Xi) +m(Xi)− Yi
}
ġTi

(α>Xi)Xi,

where α = c(φ). The same argument as in the proof of Theorem 2 is applied to the left-hand side of
the estimation equations n−1∑n

i=1 Ψ̂m(Yi, Ti,Xi|φ) = 0, but now Yi − m(Xi) taking the role of Yi in
(S.21). Cramér-Wold device and the central limit theorem imply that n−1/2∑n

i=1 Ψ̂m(Yi, Ti,Xi|φ0) con-
verges in distribution to N (0,Σ0,m), where Σ0,m = var

(
Ψm(Yi, Ti,Xi|φ0)

)
, in which Ψm(Yi, Ti,Xi|φ0) :=

J>(φ0)
{
fTi

(α>0 Xi) + m(Xi) − Yi
}
ḟTi

(α>0 Xi)Xi, where α0 = c(φ0). Let A0,m denote the matrix of the
first derivative of the function E [Ψm(Yi, Ti,Xi|φ)] (with respect to φ) evaluated at φ = φ0. Further, let
f̈t(·) denote the second derivative of ft(·) (with respect to ·). Note, E

[
J>(φ0)m(X)f̈T (α>0 X)X|X

]
=

J>(φ0)m(X)XE
[
f̈T (α>0 X)|X

]
= 0, almost surely, by the identifiability condition of model (S.1) imposed on

the link functions (f1, . . . , fL), with the result that the Hessian matrix A0,m does not depend on the augmen-
tation function m(·), and in fact A0,m = A0. By taking the first-order Taylor series expansion on the left-hand
side of the equations, n−1/2∑n

i=1 Ψ̂m(Yi, Ti,Xi|φ̂0,m) = 0, at φ̂0,m = φ0, we obtain that n1/2(φ̂0,m − φ0)
converges in distribution to N (0,A−1

0 Σ0,mA
−1>
0 ). An application of the multivariate delta method with

mapping α0 = c(φ0) entails that n1/2(α̂0,m −α0) converges in distribution to N (0,J0A
−1
0 Σ0,mA

−1>
0 J>0 ),

where J0 = J(φ0). It follows that selecting the asymptotically optimal augmentation term in (S.23) cor-
responds to finding a function m(·) that minimizes the variance of Ψm(Yi, Ti,Xi|φ0), i.e., Σ0,m. We can
decompose the matrix Σ0,m by

Σ0,m = J>(φ)E
[
E
[{(

fT (α>0 X) +m(X)− Y
)
ḟT (α>0 X)X

}⊗2 |X, T
]]
J(φ)

= J>(φ)E
[
E
[{(

fT (α>0 X) +m0(X)− Y
)
ḟT (α>0 X)X

}⊗2|X, T
]]
J(φ)

+ J>(φ)E
[{(

m(X)−m0(X)
)
ḟT (α>0 X)X

}⊗2]
J(φ),

(S.25)

where m0(·) corresponds to a function that satisfies:

E
[(
fT (α>0 X) +m0(X)− Y

)
η
(
ḟT (α>0 X)X

)
|X, T

]
= 0 (almost surely), (S.26)

for any arbitrary square-integrable function η(·). The second term in representation (S.25) implies that the
optimal m(·) that minimizes the variance must satisfy m(X) = m0(X), almost surely. Condition (S.26)
implies that the function m0(·), given X and T , must satisfy:

m0(X) = E [Y |X, T ]− fT (α>0 X) (almost surely). (S.27)

Integrating the both sides of (S.27) with respect to the distribution of T (given X) gives m0(X) =∑L
t=1 πtE [Y |T = t,X]−

∑L
t=1 πtft(α>0 X) = E [Y |X] (almost surely), where the second equality comes from

the identifiability condition on the link functions (f1, . . . , fL) of model (S.1). It follows that m0(X) = E [Y |X]
corresponds to the optimal augmentation function.

A.6. Robustness with respect to misspecified X main effects when T depends
on X

In observational studies, the treatment assignment and covariates are generally correlated. In this subsection,
we provide a justification for the utility of the working model (S.2) in estimating the T -by-X interaction
effects, even when there is a correlation between the covariates and the treatment assignment. As defined in
(7) of the main manuscript, for each fixed α ∈ Θ, let the link functions gt(·) (t = 1, . . . , L) of the working
model (S.2) satisfy:

gT (α>X) = E[Y |α>X, T ]− E[Y |α>X]. (S.28)

Here, we illustrate that the function (S.28) is designed to satisfy the constraint E[gT (α>X)|X] = 0 that
appears in the constrained optimization (6) of the main manuscript, and therefore, the associated estimator
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of the single-index coefficient α0, i.e., argminα∈ΘE[(Y − gT (α>X))2] where the link functions (g1, . . . , gL)
are defined according to (S.28), is still robust to the misspecification of µ(X) of the underlying model (S.1).
Consider the following equality:

E[gT (α>X)|X] = E[E[gT (α>X) | α>X]|X] (∀α ∈ Θ), (S.29)

where we apply the iterated expectation rule to condition on α>X on the right-hand side of (S.29). Equation
(S.29) implies that the condition E[gT (α>X)|α>X] = 0 (∀α ∈ Θ) is a sufficient condition for the constraint
E[gT (α>X)|X] = 0 (∀α ∈ Θ).

On the other hand, for the function gT (α>X) defined in (S.28), we have:

E
[
gT (α>X) | α>X

]
= E

[
E[Y |α>X, T ]− E[Y |α>X] | α>X

]
= E

[
E[Y |α>X, T ] | α>X]− E[E[Y |α>X] | α>X

]
= E

[
Y | α>X]− E[Y | α>X

]
= 0,

i.e., E[gT (α>X) | α>X] = 0 (∀α ∈ Θ). Therefore, from the right-hand side of (S.29), we obtain
the desired constraint E[gT (α>X)|X] = 0 (∀α ∈ Θ). This constraint implies E[gT (α>X)µ(X)] =
E[E[gT (α>X)|X]µ(X)] = 0 (∀α ∈ Θ), i.e.,

gT (α>X) ⊥ µ(X) (∀α ∈ Θ). (S.30)

Thus, in the iterative optimization procedure, for each candidate α ∈ Θ, the estimator ĝT (α>X) =
ĝ∗∗T (α>X)− ĝ∗(α>X) (as defined in the discussion section of the main manuscript) for the link function
(S.28) can be used as the working link functions gt (t = 1, . . . , L) in (11) of the main manuscript. Then, by
the orthogonality (S.30), the associated profile minimizer α̂0 of the objective (11) is (asymptotically) robust
to the misspecification of µ(X) of the underlying model (S.1). Therefore, the working model (S.2) can still be
useful in fitting the interaction effect term of model (S.1) even when X and T are correlated, as it side-steps
the issue that would arise (i.e., severe inconsistency of the estimators of the interaction term) when the X
main effect µ(X) is misspecified. The simulation example in Section B.3 considers a scenario where the
covariates and the treatment assignment are correlated, and a close-to-optimal performance of the proposed
regression approach to optimizing individualized treatment rules is reported. However, the approach generally
results in biased causal effect estimates and sub-optimal individualized treatment rules if T depends on X,
as discussed in the next subsection.

A.7. Suboptimality of the individualized treatment rules when T depends on X

Let Y (t) ∈ R be the potential outcome under treatment T = t (as defined in Section 2 of the main manuscript),
and suppose the standard assumptions of causal inference (Rubin, 1978) hold: Assumption 1) consistency,
i.e., T = t implies Y = Y (t); Assumption 2) no unmeasured confounders, i.e., T is independent of Y (t) given
X; Assumption 3) positivity, i.e., for every covariate X, the probability of receiving every level of treatment
is positive.

Under such assumptions, the functions gt(α>X) (t = 1, . . . , L) on the right-hand side of (3) of the main
manuscript can be defined in terms of the potential outcome framework, as:

gt(α>X) := E[Y (t)|α>X]− E[Y |α>X] (almost surely) (t = 1, . . . , L). (S.31)

If the treatment T is independent of X (as can happen in randomized studies), (S.31) reduces to (7) of the
main manuscript, i.e.,

gt(α>X) = E[Y |α>X, T = t]− E[Y |α>X] (almost surely) (t = 1, . . . , L), (S.32)

which one can consistently estimate from observed data, for example, using spline smoothing, given each
fixed α. However, if T depends on X (as in observational studies), the expression for gt(α>X) (t = 1, . . . , L)
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on the right-hand side of (S.32) is generally not valid. To elaborate on this, under the consistency assumption
(Assumption 1), the right-hand side of (S.32) can be written as:

E[Y (t)|α>X, T = t]− E[Y |α>X] (almost surely) (t = 1, . . . , L). (S.33)

Although the no unmeasured confounder assumption (Assumption 2) implies that Y (t) ⊥ T given X, in
general, Y (t) and T need not be independent each other, given only α>X (as in the case of (S.33)). Therefore,
expression (S.33) is not, in general, equal to the right-hand side of (S.31). It follows that, in observational
studies, even if one could consistently estimate the right-hand side of (S.32), the estimators would not be
generally consistent for the functions (S.31). Thus, the associated treatment decision rules are potentially
suboptimal in the context of observational studies.

Web Appendix B: Results from simulation studies

B.1. Constrained single-index regression for L = 3 treatment level case

In this section, we provide additional simulation results to investigate the performance of constrained
single-index model for estimating optimal treatment decision rules when the number of treatment options
L = 3. We consider n ∈ {250, 500} and p ∈ {10, 20}, with a varying main effect intensity δ ∈ {1, 2}. 100
training datasets are simulated for each scenario. We generate covariates Xi ∼ N (0, Ip), and treatments
Ti ∈ {1, 2, 3} with equal probability at random, independently of Xi. We generate outcomes from model (S.1):
Yi = µ(Xi) + fTi

(h(α>0 Xi)) + εi, where εi ∼ N (0, 0.42). We set α0 = (1, 0.5, 0.25, 0.125, 0, . . . , 0)> ∈ Rp
normalized to have unit L2 norm. The treatment-specific functions ft (u) (t = 1, 2, 3), u ∈ [0, 1] are set to be f1(u) = u1(1− u)4/B(2, 5)− f0(u)

f2(u) = u1(1− u)1/B(2, 4)− f0(u)
f3(u) = u4(1− u)0/B(5, 1)− f0(u),

(S.34)

where B(a, b) = (Γ(a)Γ(b)) /Γ(a+b) is a Beta function, and f0(u) := {u1(1−u)4/B(2, 5)+u1(1−u)1/B(2, 4)+
u4(1− u)0/B(5, 1)}/3. The functions in (S.34) are illustrated in Figure S.1.
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Figure S.1: Illustration of the treatment t-specific functions ft(u) (t = 1, 2, 3) used to generate the treatment
t-specific responses in the L = 3 treatment group case.

The “centering” function f0(u) is introduced to satisfy the identifiability condition on the treatment-specific
functions ft of model (S.1). In (S.34), u = h(α>0 X), where h is the cumulative distribution function of a
re-scaled and centered B(3, 3), that is, h (s) = 0.9375

∫ s/r
−1 (1− s2)2ds, s ∈ [−r, r], in which r is the maximum

of {|α>0 Xi|, i = 1, . . . , n}. This transformation h makes the distribution of u relatively uniformly distributed
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in [0, 1]. Figure S.1 displays the treatment-specific functions ft (u) (t = 1, 2, 3), u ∈ [0, 1] of (S.34). The main
effect component µ(X) in model (S.1) is set to be

µ(X; δ) = 2δ cos(η>X), (S.35)

where the scaling parameter δ ∈ {1, 2} regulates the contribution of the X main effect on the variance of Y ,
in which δ = 1 represents a relatively moderate main effect (contributing about the same variance as the
interaction effect does) and δ = 2 a relatively big main effect case (about 4 times larger), respectively. In
(S.35), we set the coefficient η = (η1, . . . , η10, 0, . . . , 0)> ∈ Rp, in which the vector (η1, . . . , η10)> ∈ R10 is
generated independently from a multivariate Gaussian distribution, and is then rescaled to have unit L2

norm, for each simulation run. Without loss of generality, we assume that higher values of Y are preferred.

When L > 2, a common regression approach to model the interaction effects between T and X on an
outcome is to fit a regression model separately for each of the L treatment groups, as functions of X. For
instance, one can fit a linear model (or a single-index model) to estimate the functions E[Y |X, T = t]
(t = 1, . . . , L), separately for each treatment group t. The corresponding estimators, D̂opt, of Dopt can be set
to be D̂opt(X) = arg maxt∈{1,...,L} Ê[Y |X, T = t], in which each of the functions Ê[Y |X, T = t] (t = 1, . . . , L)
is estimated from a treatment t-specific linear regression or a treatment t-specific single-index regression.
These two treatment-specific regression-based estimators are compared to the proposed estimator of Dopt
that utilizes the constrained single-index model (S.1).

For each simulation run, we estimate Dopt from each of the 3 methods based on a training set (of size n), and
for evaluation of these methods, we estimate the value V (D̂opt) of each estimate D̂opt by

V̂ (D̂opt) =
ñ∑
i=1

Yi1(Ti=D̂opt(Xi))
/

ñ∑
i=1

1(Ti=D̂opt(Xi))
, (S.36)

computed based on a testing set of size ñ = 105. Since we know the true data generating model in simulation
studies, the optimal individualized treatment rule Dopt can be determined for each simulation run. Given
each estimate D̂opt for Dopt, we report V̂ (D̂opt)− V̂ (Dopt) calculated based on (S.36), as the performance
measure of the estimator D̂opt. A larger value of the measure indicates a better performance.

Figure S.2 displays the boxplots of the value ratios of the individualized treatment rules estimated from the 3
methods (the constrained single-index model, the L separate linear regression models, and the L separate
single-index models), for each combination of n ∈ {250, 500}, p ∈ {10, 20} and the main effect intensity
parameter δ ∈ {1, 2}.

−0.6

−0.4

−0.2

0.0

10 20
p

V^
(D^

o
p

t )
−

V^
(D

o
p

t )

n = 250  &  δ = 1

−0.6

−0.4

−0.2

0.0

10 20
p

 

n = 250  &  δ = 2

−0.6

−0.4

−0.2

0.0

10 20
p

 

n = 500  &  δ = 1

−0.6

−0.4

−0.2

0.0

10 20
p

 

n = 500  &  δ = 2

Method

CSIM

L−LR

L−SIM

Figure S.2: Boxplots comparing 3 approaches to estimating Dopt, given each scenario indexed by δ ∈ {1, 2}
and p ∈ {10, 20}, for the L = 3 treatment level cases. For each scenario, from left to right, estimation
approaches for Dopt: 1) the constrained single-index model (red); 2) the L separate linear models (green); 3)
the L separate single-index models (violet). The case with δ = 1 (or δ = 2) corresponds to the moderate (or
large) main effect scenario; p = 10 (or p = 20) corresponds to the dimension of X. The dotted horizontal line
represents the optimal value corresponding to Dopt.
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The boxplots indicates that the proposed constrained single-index model outperforms all other methods, in all
cases. In particular, when L > 2, estimating L separate regression models lacks parsimony and interpretability,
whereas the constrained single-index model provides a single projection α>X that captures the variability in
X related to the treatment effect-modification, in the presence of an unspecified main effects of X. When
the X main effect dominates the T -by-X interaction effect (when δ = 2), these L separate regressions tend
to focus more on capturing the main effect of X and therefore missing the important T -by-X interaction
effect. On the other hand, the constrained single-index model consistently targets the interaction effect.
As a result, in Figure S.2, although the increased magnitude of the main effect affects the performance of
all methods, it has least effect on the constrained single-index model, and more effect on the L separate
regression approaches.

B.2. Comparison to the doubly robust estimation

In this subsection, we compare our method to the augmented inverse probability weighted estimator (AIPWE)
of Zhang et al. (2012). Here, we follow the exact simulation scenario (with slightly different notation) reported
in Appendix D of Zhang et al. (2012) and compare their results to the results of using constrained single-index
model (S.1). We generate n = 500 observations (Yi, Ti,Xi), i = 1, . . . , n. The correct model for the outcome
in their setting is Yi = µc(Xi, Ti) + εi, for εi standard normal and

µc(X, T ) = E [Y |X, T ] = exp
{

(2− 1.5X2
1 − 1.5X2

2 + 3X1X2 + (T − 1)(−0.1−X1 +X2 + 0.2X3)
}
,

where the treatment random variable T takes a value in {1, 2} with equal probability, independently of the 3
covariates X = (X1, X2, X3)> with X1, X2 ∼ unif[−1.5, 1.5] and X3 ∼ Bernoulli(0.5). Note, this simulation
setting includes a discrete-valued covariate, which violates Assumption 4 of the main manuscript. Further, in
this setting, the proposed model (S.1) is misspecified, since the X main effect term and the T -by-X interaction
effect term of the data generating model µc(X, T ) are associated in a multiplicative manner, rather than in
an additive manner as in model (S.1) (notice the exp{·} function in the data generating model). The optimal
individualized treatment rule according to the true model µc is Dopt(X) = 1(−0.1−X1+X2+0.2X3>0) + 1, and
the corresponding optimal value (obtained by (S.36) based on Monte Carlo simulation using 106 replicates) is
V̂ (Dopt) = 3.95.
Zhang et al. (2012) compared several estimators of the optimal treatment decision: i) a direct regression
estimator (RGµc) based on the correct model µc; ii) a direct regression estimator using a misspecified linear
model for the outcome (RGµm), containing only the main effects of the p = 3 covariates; iii) the inverse
probability weighted estimator (IPWE); iv) the AIPWE with the correct model (AIPWEµc); and v) the
AIPWE with a misspecified regression linear model (AIPWEµm) which will be used in the usual case of
the absence of prior knowledge. In Table S.1, these methods are compared to the approaches of using the
constrained single-index model (S.1) and the modified covariates (MC) model (2) in the main manuscript to
estimating Dopt, with respect to the values V̂ (D̂opt) defined in (S.36), computed based on an independently
generated Monte Carlo simulation using 106 replicates of (Yi, Ti,Xi). The quantities reported in Zhang
et al. (2012) are indicated by †. In this example, to avoid being trapped into a local minimum in optimizing
the working model (S.2), we used 12 different starting points for α by setting an initial candidate solution
α

(k)
ini = (1, u1, u2), normalized to have unit L2 norm, with u1, u2 ∼ unif[−1, 1], for each k = 1, . . . , 12. We

then chose among these 12 fits the model giving the minimal residual sum of squares.
The results in Table S.1 indicate that constrained single-index model (CSIM) performance is close to optimal
(with the estimated value 3.90) and outperforms AIPWEµm (the last column), which will be used in the usual
case of the absence of prior knowledge on the outcome models. Importantly, the constrained single-index
model is computationally fast and can handle high dimensional settings whereas the AIPWE approach quickly
becomes infeasible as the dimension increases using the grid search described in Zhang et al. (2012).

B.3. Comparison to the doubly robust estimation for observational study setting

In this subsection, we compare the constrained single-index model to AIPWE of Zhang et al. (2012), by
conducting a simulation that mimics an observational study in which the treatment assignment mechanism
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Table S.1: Comparison of the constrained single-index model and the modified covariates model with AIPWE,
with respect to the value of the individualized treatment rules. The optimal value is V̂ (Dopt) = 3.95.
AIPWEµm is the AIPWE method that will be used in practice.

CSIM MC RGµc RGµm IPWE AIPWEµc AIPWEµm
V̂ (D̂opt) (SD) 3.90 (0.02) 3.65 (0.10) †3.95 (0.00) †3.66 (0.10) †3.84 (0.08) †3.94 (0.01) †3.89 (0.07)

depends on X. As in Section B.2, we follow the exact simulation scenario (with slightly different notation)
reported in Section 4 (Simulation Studies) of Zhang et al. (2012) and compare their results to the results of
using the constrained single-index model (S.1). We generate n = 500 independent observations (Yi, Ti,Xi),
i = 1, . . . , n. The true model for the outcome in their setting is Yi = µc(Xi, Ti) + εi, for εi standard normal
and

µc(Xi, Ti) = exp
{

2− 1.5X2
i,1 − 1.5X2

i,2 + 3Xi,1Xi,2 + (Ti − 1)(−0.1−Xi,1 +Xi,2)
}
,

where the 2 covariates Xi = (Xi,1, Xi,2)> with Xi,1, Xi,2 ∼ unif[−1.5, 1.5], and the treatment Ti ∼
Bernoulli(πi) + 1 ∈ {1, 2}, where πi = exp(−1 + 0.8X2

i,1 + 0.8X2
i,2)/{1 + exp(−1 + 0.8X2

i,1 + 0.8X2
i,2)}.

The optimal individualized treatment rule according to the true model µc is Dopt(Xi) = 1(Xi,2>Xi,1+0.1) + 1,
and the corresponding optimal Value (obtained by (S.36) based on Monte Carlo simulation using 106 replicates)
is V̂ (Dopt) = 3.71.

We report several estimators of the optimal individualized treatment rule Dopt presented in Zhang et al.
(2012): i) the inverse probability weighted estimator (IPWE); ii) the AIPWE with the correctly specified
outcome model (AIPWEµc); and iii) the AIPWE with a misspecified (linear) outcome model (AIPWEµm).
For these three estimators, results are shown using both correct and incorrect models for the propensity score
(PS) of treatment assignments: a) the correctly specified model (“PS correct”); b) a misspecified logistic
regression linear model (“PS incorrect”).

In Table S.2, these methods are compared to the approaches of using the constrained single-index model (S.1)
and the modified covariates model (2) in the main manuscript to estimating Dopt, with respect to the values
V̂ (D̂opt) defined in (S.36), computed based on an independently generated Monte Carlo simulation using 106

replicates of (Yi, Ti,Xi). For the modified covariates method, we treat Ti as independent of Xi, and π1 in
model (2) of the main manuscript is estimated by n−1∑n

i=1 1(Ti=1). As discussed in Section 6 of the main
manuscript, the constrained single-index regression does not require to postulate a model for the propensity
score, however, it requires estimators (g1, . . . , gL) that asymptotically satisfy (7) of the main manuscript (for
each fixed α). We use the estimators (10) in the main manuscript for such (g1, . . . , gL).

To avoid being trapped into a local minimum in optimizing the working model (S.2), as in Section , we used
12 different starting points for α by setting an initial candidate solution α(k)

ini = (1, u), normalized to have
unit L2 norm, with u ∼ unif[−1, 1] for each k = 1, . . . , 12, and then chose among these 12 fits the model
giving the minimal residual sum of squares. The quantities reported in the Table 1 of Zhang et al. (2012) are
indicated by †.

The results in Table S.2 indicate that the constrained single-index model performance (with the estimated
value 3.66) is close to optimal, and performs similarly or outperforms AIPWEµm (the 5th and 8th columns
in Table S.2), which will be used in the usual case of the absence of prior knowledge on the outcome models.
The results suggest that utilizing model (S.2) in estimating the interaction effects can still be effective in the
context of observational studies.

Table S.2: Comparison of the constrained single-index model and the modified covariates model with AIPWE,
with respect to value of individualized treatment rules. The optimal value is V̂ (Dopt) = 3.71. AIPWEµm is
the AIPWE method that will be used in practice.

propensity score correct propensity score incorrect
CSIM MC IPWE AIPWEµc AIPWEµm IPWE AIPWEµc AIPWEµm

V̂ (D̂opt) (SD) 3.66 (0.09) 3.38 (0.16) †3.63 (0.07) †3.70 (0.01) †3.66 (0.07) †3.42 (0.20) †3.70 (0.01) †3.57 (0.20)
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B.4. Implementational detail of the penalized additive cubic spline least squares
approach

In this subsection, as referenced in Section 4 of the main manuscript, we provide the implementational detail
of the penalized additive cubic spline least squares (PLS) approach considered in Section 4 and 5 of the main
manuscript. As indicated in Section 4 of the main manuscript, we implement this method by estimating
E[Y |X, T = t] via an additive regression for each treatment separately. We use a set of additive cubic
spline bases {b(X(t)

ij ), j = 1, . . . , p} (t = 1, 2), where b(·) denotes a 8-dimensional cubic spline basis defined
over the range of its argument, and X

(t)
ij represents the jth covariate for the ith subject assigned with the

tth treatment. We use the integrated squared second derivative cubic spline penalty, with the smoothing
parameter (for each treatment) estimated by the generalized cross-validation (GCV). For each treatment,
each additive term is subject to a sum-to-zero identifiability constraint and an additional intercept term is
included (which is not penalized). The method is implemented through the R-package mgcv (Wood, 2019).

B.5. Correlated covariates case

In Section 4 of the main manuscript, all covariates are generated independently. In this section, we consider
the case where there is a substantial amount of correlation among the covariates X. We consider the same
settings as Section 4 of the main manuscript, i.e., the simulation settings “A” and “B”, but with dependent
covariates X. To generate correlated X, first, we independently generate a set of n p-dimensional normal
random vectors from the zero mean and unit variance, with pairwise correlation 0.5. Next, we transform each
of the p variables by using the standard normal cumulative distribution function (CDF), and obtain a set of n
p-dimensional standard uniform correlated random variables; then these are shifted and scaled to give a set of
n p-dimensional correlated unif[−π/2, π/2] variables Xi ∈ Rp (i = 1, . . . , n). In the both simulation settings
“A” and “B” in Section 4 of the main manuscript, the main effect function µ(X, δ) is a function of η>X,
where we set η = (−1, 1,−1, 1,−1, 1, 0, 0, 0, 0)>. In this correlated X setting, however, there is a substantial
amount of positive correlation among the covariates X. Therefore, the variance of η>X for the correlated X
case is substantially smaller than that of η>X for the independent X case (due to substantial cancelation
by the particular linear combination η that consists of −1 and 1 that appear consecutively to each other),
resulting in a much smaller magnitude of the X main effect as compared to that of the settings considered in
Section 4 of the main manuscript. Thus, in this section with correlated X, we randomly generate the first 6
elements ηj ∼ unif[−1, 1] (j = 1, . . . , 6) and take (η1, . . . , η6, 0, 0, 0, 0)> ∈ R10, which is then scaled to have a
unit L2 norm, as the index vector η ∈ R10 associated with the X main effect, for each simulation run. All
other parameters are set as in Section 4 of the main manuscript.

As in Section 4 of the main manuscript, we present the boxplots, obtained from 100 simulation runs, of
the (centered) values V̂ (D̂opt) − V̂ (Dopt) of the individualized treatment rules D̂opt estimated from the 5
approaches, for each combination of n ∈ {250, 500}, δ ∈ {1, 2} (corresponding to moderate or large main effects,
respectively) and ξ ∈ {0, 0.5} (corresponding to correctly-specified or mis-specified single-index interaction
effect models, respectively), for the simulation set “A” in the top panels and the set “B” in the bottom panels.

The results in Figure S.3 indicate that the proposed constrained single-index model (CSIM) outperforms all
other approaches in estimating Dopt, except in simulation set A for the case of a relatively small sample size
(n = 250), particularly when the underlying interaction effect model deviates from the single-index model
(ξ = 0.5, i.e., the model is misspecified); however, as the sample size increases to n = 500, the proposed
method outperforms all other approaches. With substantial nonlinearity in the interaction effect term in
the both settings A and B, the modified covariates model, which assumes a restricted linear model on the
interaction term, is clearly outperformed by the proposed approach that utilizes a set of flexible link functions
to accommodate the nonlinear treatment effect modification. When n = 500 (i.e., with a relatively large
training sample size) and ξ = 0.5 (i.e., when the underlying model deviates from the single-index structure),
the penalized additive spline approach (PLS), due to its large model space, outperforms the modified covariates
approach; however, the penalized additive spline approach is outperformed by the proposed constrained
single-index regression method, which is robust to the X main effect model misspecification. When the X
main effect dominates the T -by-X interaction effect (i.e., when δ = 2), although the increased magnitude of
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Figure S.3: Boxplots comparing 5 approaches to estimating Dopt, given each scenario indexed by δ ∈ {1, 2}
and ξ ∈ {0, 0.5}, for the simulation setting “A” in the top panels and the setting “B” in the bottom panels,
for the correlated covariate cases. For each scenario, from left to right, estimation approaches for Dopt: 1)
the constrained single-index model (red); 2) the modified covariates model (green); 3) the outcome weighted
learning with a linear kernel (violet); 4) the outcome weighted learning with a Gaussian kernel (purple); 5)
the penalized spline least squares approach (dark purple). The case with ξ = 0 (or ξ = 0.5) corresponds to
the correctly-specified (or mis-specified) single-index interaction model scenario; δ = 1 (or δ = 2) corresponds
to the moderate (or large) main effect scenario. The dotted horizontal line represents the optimal value
corresponding to Dopt.
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the main effect dampens the performance of all approaches to estimating optimal individualized treatment
rules, the proposed approach consistently targets the interaction effect, and its performance is near optimal
when n = 500.

B.6. Coverage probability of normal-approximated bootstrap confidence inter-
vals

In Section 5 of the main manuscript, we compute a normal-theory based 95% bootstrap confidence interval
(α̂0j − 1.96

√
v̂ar[α̂0j ], α̂0j + 1.96

√
v̂ar[α̂0j ]) for α0j (j = 1, . . . , p) of the single-index coefficient vector

α0 = (α01, . . . , α0p)> of the underlying model (S.1), where v̂ar[α̂0j ] denotes the sampling variance estimate of
α̂0j (j = 1, . . . , p), obtained based on 500 bootstrap replicates of α̂0. This normal-approximated confidence
interval is based on the result of Theorem 2 of the main manuscript that the estimator α̂0j for α0j is
asymptotically normally distributed. However, a proof that this is a valid approach to construct confidence
intervals is not currently available; thus this should be regarded as heuristics. In particular, this approach
may not yield accurate 95% confidence intervals if some bootstrap replicates of α̂0 fall into local optimums,
inflating the estimate of sampling variance.

To evaluate the coverage probability of these normal-theory bootstrap confidence intervals, we conduct a set
of simulation experiments. We consider the setting of Simulation set “A” in Section 4 of the main manuscript,
with δ = 1 and ξ = 0, i.e., the outcome Y is generated from:

Yi = 0.8 cos(η>Xi) + (−1)Ti(e−(α>0 Xi−0.5)2
− 0.5) + εi (i = 1, . . . , n), (S.37)

in which η = (−1, 1,−1, 1,−1, 1, 0, 0, 0, 0)> and α0 = (1, 0.5, 0.25, 0.125, 0, 0, 0, 0, 0, 0)>, each normalized to
have unit norm. We vary the sample size n ∈ {50, 100, 200, 400, 800, 1600}. In (S.37), the term µ(X) :=
0.8 cos(η>X) represents the X main effect whereas the term fT (α>0 X) := (−1)T (e−(α>0 X−0.5)2 − 0.5)
represents the T -by-X interaction effect, and the aforementioned normal-theory bootstrap confidence intervals
are constructed for the single-index coefficient α0 = (α01, . . . , α0p)> associated with the interaction effect
term in (S.37).

In Table S.3, although the “actual” coverage probabilities appear to get relatively closer to the “nominal”
coverage probability of 0.95 as the sample size n increases, they are often larger than their nominal level, i.e.,
the bootstrap confidence intervals are often too wide. This is because some of the bootstrap replicates of the
estimator α̂0 fall into their local optima; ideally, all of the 500 bootstrap replicates of α̂0 should be from the
global minima of the corresponding bootstrapped criterion functions. We note that the convergence of the
iterative algorithm to global minimums depends on initialization. For binary treatment cases, throughout the
paper (and in obtaining the results given in Table S.3), we have used the least square estimate of α (i.e., the
minimizer of (15)) of the modified covariates linear model (2) of the main manuscript as an initial value of
the iterative procedure. However, this initialization sometimes yields bootstrap replications of α̂0 that are
only local (i.e., not global) minima of the associated bootstrapped criterion functions, that are often “outliers”
in comparison to the rest of the bootstrap replications, resulting in an inflated bootstrap sampling variance
estimate of the estimator α̂0. In obtaining the results of Table S.3, there appeared to be a handful of such
outliers out of 500 bootstrap replications of α̂0 (note, 500 such replications are computed for each of the 200
simulation runs in each scenario) that impact the coverage probability.

In contrast to the simulations that gave Table S.3, for the simulation results in Table S.4, we have used as an
initial value for α̂0, a value that is close to the true coefficient vector α0 = (1, 0.5, 0.25, 0.125, 0, 0, 0, 0, 0, 0)> ∈
R10 (normalized to have unit norm), rather than using the MC linear model estimate as an initial value.
Specifically, we have used the vector (1, 0.7, 0.4, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05)> ∈ R10 (normalized to have
unit norm) as an initial estimate of the iterative procedure to estimate the true coefficient α0. The idea is
that, by starting from a value that is close to α0 (which is feasible only in a simulation setting), one could
minimize the chance of α̂0 missing the global optimum in this simulation experiment. In practice, one way to
mitigate this problem of getting trapped into local optima (as mentioned in the Discussion section of the
main manuscript) is to consider multiple initial values in estimation. We did not pursue this approach in this
simulation experiment, as it becomes computationally expensive: multiple starting points (say, 100) × 500
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bootstrap replications for estimating the sampling variance × 200 such simulation runs for computing the
coverage proportion, for each of the 6 scenarios.

In comparison to the results in Table S.3, the results in Table S.4 appear to provide better coverage proportions
that are close to the nominal level of 0.95. This suggests that, provided that the iterative procedure for
obtaining α̂0 avoids getting trapped in a local optimum, the normal-theory based bootstrap confidence
intervals can be reasonably accurate.

Table S.3: The proportion of time (out of 200 simulation runs) that the normal-theory based bootstrap 95%
confidence interval contains the true value of αj (j = 1, . . . , 10), with varying n ∈ {50, 100, 200, 400, 800, 1600},
when the modified covariate model estimate is used as an initial value for the iterative procedure for obtaining
α̂0.

n α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

50 0.545 0.735 0.910 0.965 0.990 0.980 0.975 0.975 0.940 0.950
100 0.865 0.840 0.915 0.930 0.960 0.955 0.975 0.940 0.955 0.960
200 0.990 0.935 0.965 0.970 0.960 0.960 0.960 0.970 0.985 0.980
400 0.990 0.990 0.995 0.980 0.985 0.990 0.990 0.995 0.990 0.985
800 0.950 0.970 0.950 0.975 0.970 0.975 0.960 0.985 0.955 0.980
1600 0.975 0.960 0.960 0.965 0.970 0.960 0.960 0.960 0.980 0.960

Table S.4: The proportion of time (out of 200 simulation runs) that the normal-theory based bootstrap 95%
confidence interval contains the true value of αj (j = 1, . . . , 10), with varying n ∈ {50, 100, 200, 400, 800, 1600},
when a value close to the true coefficient α0 is used as an initial value for the iterative procedure for obtaining
α̂0.

n α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

50 0.765 0.870 0.950 0.965 0.970 0.985 0.975 0.960 0.980 0.945
100 0.950 0.945 0.975 0.940 0.985 0.960 0.980 0.955 0.975 0.960
200 0.995 0.975 0.975 0.960 0.960 0.975 0.970 0.965 0.980 0.990
400 0.955 0.970 0.970 0.955 0.960 0.960 0.970 0.955 0.950 0.965
800 0.940 0.940 0.920 0.970 0.945 0.945 0.935 0.965 0.930 0.950
1600 0.940 0.950 0.955 0.950 0.950 0.965 0.955 0.960 0.950 0.975
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