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Abstract
We consider a single-index regression model, uniquely constrained to estimate
interactions between a set of pretreatment covariates and a treatment variable
on their effects on a response variable, in the context of analyzing data from
randomized clinical trials. We represent interaction effect terms of the model
through a set of treatment-specific flexible link functions on a linear combina-
tion of the covariates (a single index), subject to the constraint that the expected
value given the covariates equals 0, while leaving the main effects of the covari-
ates unspecified. We show that the proposed semiparametric estimator is consis-
tent for the interaction term of the model, and that the efficiency of the estima-
tor can be improvedwith an augmentation procedure. The proposed single-index
regression provides a flexible and interpretablemodeling approach to optimizing
individualized treatment rules based on patients’ data measured at baseline, as
illustrated by simulation examples and an application to data from a depression
clinical trial.

KEYWORDS
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1 INTRODUCTION

In precision medicine, a critical concern is to charac-
terize individuals’ heterogeneity in treatment responses
in order to enable individual-specific treatment decisions
to be made (Murphy, 2003; Robins, 2004). Furthermore,
estimating treatment and pretreatment covariate interac-
tions in the setting of randomized clinical trials may pro-
vide valuable information for understanding the factors
involved in heterogeneous treatment responses. In this
paper, we propose a simple and flexible regression method
specifically focused on estimating the interaction effects
between a treatment variable and pretreatment covariates
on a treatment response.
Since the seminal papers of Murphy (2003) and Robins

(2004), much research has been done on development

of individualized treatment rules based on pretreatment
covariates. Regression-based methodologies are intended
to optimize the individualized treatment rules by esti-
mating treatment-specific mean response functions (eg,
Qian and Murphy, 2011; Zhang et al., 2012; Lu et al., 2011;
Petkova et al., 2019) while attempting to maintain robust-
ness with respect to model misspecification. Machine
learning approaches for developing individualized treat-
ment rules are often framed in the context of classification
problems (Zhang et al., 2012; Zhao et al., 2019); for exam-
ple, the outcome weighted learning (eg, Zhao et al., 2012,
2015; Song et al., 2015) based on support vector machines,
tree-based classification (eg, Laber and Zhao, 2015), and
the methods of Kang et al. (2014) based on adaptive boost-
ing, among others. Although the classification approaches
are appealing in many settings, here we focus on familiar
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regression approaches that are frequently utilized in prac-
tice, and allow for ready interpretation.
Qian and Murphy (2011) show that the optimal indi-

vidualized treatment rules (in terms of maximizing the
mean treatment response) depends only on the treatment
and pretreatment covariates’ interaction effects, and
not on the main effects of the pretreatment covariates
present in the mean response function. However, if the
model inadequately represents the interaction effects,
the estimated individualized treatment rule may perform
poorly (Murphy, 2005; Qian and Murphy, 2011). The
primary focus of this paper is to develop a semiparametric
regression method for estimating the interaction effect
term of the mean response function, which reduces
concerns regarding misspecification of the interaction
effects.
Qian andMurphy (2011) approximate themean response

function using a rich linear model with a penalized least
squares criterion. However, this approach is generally not
robust to misspecification of the main effect term of the
model and is also restricted to a parametric regression.
Also, if the main effect is responsible for a relatively large
proportion of the variance in the outcome compared to
the interaction effect, consistent estimation of the inter-
action effect is difficult. Addressing this issue, Tian et al.
(2014) proposed an approach to consistently estimate the
treatment-by-covariate interaction effect without having
to specify the main effect. However, their approach is
applicable only to the (generalized) linear model frame-
work and only when there are exactly two treatments. In
realistic situations, a linear model may be too restrictive to
describe complex interactions. Zhang et al. (2012) proposed
a robust approach to estimating an optimal individualized
treatment rule, within a class of rules defined by a (possibly
misspecified) regression model. However, their method
is computationally feasible only in low-dimensional
settings. Song et al. (2017) proposed a semiparametric
regression model to estimate an optimal individualized
treatment rule, but their approach is limited to a mono-
tone interaction effect structure and to binary treatment
conditions.
A primary contribution of this paper is in generaliz-

ing the work of Tian et al. (2014) to allow for a semi-
parametrically defined interaction effect and also for more
than two treatments in the context of randomized clini-
cal trials. We do this by extending a single-index model
(eg, Stoker, 1986) to allow treatment-specific nonparamet-
ric link functions (Park et al., 2020) in order to capture the
treatment-by-covariates interaction effects, while allowing
for an unspecified main effect of the covariates. The result
is a simple and flexible regression model for the interac-
tion effects.

2 CONSTRAINED SINGLE-INDEX
MODELS

In the context of randomized clinical trials, we con-
sider pretreatment covariates 𝑿 ∈ ℝ𝑝 and a categorical
treatment variable 𝑇 ∈ {1, … , 𝐿} (with 𝐿 levels) that has
associated randomization probabilities (𝜋1, … , 𝜋𝐿). We let
𝑌(𝑡) ∈ ℝ (t = 1,...,L) be the potential outcome if the
patient received treatment 𝑇 = 𝑡 (𝑡 = 1, … , 𝐿); we only
observe 𝑌 = 𝑌(𝑇), 𝑇, and 𝑿. Throughout the paper, we
assume, without loss of generality, that 𝐸[𝑌|𝑇 = 𝑡] =

0 (𝑡 = 1, … , 𝐿), that is, the main effect for 𝑇 is centered at 0
(this is only to suppress the treatment-specific intercepts in
regression models in order to simplify the exposition, and
can be achieved by removing the treatment level 𝑡-specific
means from 𝑌) and that 𝑿 is centered at zero.
The focus of this paper is on modeling interactions

between 𝑿 and 𝑇 on their effects on 𝑌. We assume
𝑌 = 𝐸[𝑌|𝑿, 𝑇] + 𝜖, where 𝜖 is a zero-mean independent
noise with finite variance. Let us assume that the nested
mean model associated with the interaction effects has
a single-index model structure with a set of treatment
𝑡-specific link functions, for a single-index coefficient
𝜶0 ∈ ℝ𝑝:

𝐸[𝑌 ∣ 𝑿, 𝑇 = 𝑡] = 𝜇(𝑿)
⏟⏟⏟

main ef fect

+ 𝑓𝑡(𝜶
⊤
0 𝑿)

⏟⎴⏟⎴⏟
interaction

(𝑡 = 1, … , 𝐿),

(1)
where 𝜇(𝑿) represents an unspecified main effect of 𝑿. In
model (1), the treatment 𝑡-specific functions 𝑓𝑡(⋅) are gen-
eral smooth univariate functions. To obtain an identifiable
representation, without loss of generality, the treatment
𝑡-specific functions (𝑓1, … , 𝑓𝐿) in model (1) are assumed
to satisfy a condition:𝐸[𝑓𝑇(𝜶⊤

0 𝑿)|𝑿] =
∑𝐿

𝑡=1 𝜋𝑡𝑓𝑡(𝜶
⊤
0 𝑿) =

0 (almost surely). This condition indicates that there are
only 𝐿 − 1 unrestricted functions 𝑓𝑡 among the 𝐿 interac-
tion functions (𝑓1, … , 𝑓𝐿); that is, the 𝐿th function 𝑓𝐿 in
(1) is identified by the other (𝐿 − 1) functions: 𝑓𝐿(𝜶⊤

0 𝑿) =

−𝜋−1
𝐿

∑𝐿−1

𝑡=1
𝜋𝑡𝑓𝑡(𝜶

⊤
0 𝑿) (almost surely).

In model (1), the single-index coefficient 𝜶0 is iden-
tifiable only up to scale and sign due to the nonpara-
metric nature of the link functions 𝑓𝑡 (𝑡 = 1, … , 𝐿) and
therefore, without loss of generality, we assume 𝜶0 ∈ Θ,
where

Θ ∶= {𝜶 = (𝛼1, … , 𝛼𝑝)⊤ ∈ ℝ𝑝 ∶ ‖𝜶‖ = 1, 𝛼1 > 0}.

The semiparametric model (1) captures the variability
in 𝑿 related to the treatment effects via a single index
𝜶⊤

0 𝑿 ∈ ℝ and its interactions with the treatment via
treatment-specific link functions (𝑓1, … , 𝑓𝐿). Interac-
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tion effects are determined by the distinct shapes of
the unspecified functions (𝑓1, … , 𝑓𝐿). There are several
reasons we consider a single-index 𝜶⊤

0 𝑿 in (1) (as opposed
to treatment-specific 𝐿 indices). First, the common
single index provides a parsimonious one-dimensional
composite treatment effect modifier (defined as a linear
combination of 𝑿) that allows an intuitive visualization
for the interaction effect. Besides its parsimonious appeal,
the single-dimensional reduction model (1) naturally and
directly extends the linear model-based approach (eg, Tian
et al., 2014) in the 𝐿 = 2 setting. If 𝐿 = 2 and we restrict
the unspecified interaction function 𝑓𝑡(⋅) in model (1) to
a prespecified linear form 𝑓𝑡(𝜶

⊤
0 𝑿) = (𝑡 + 𝜋1 − 2)𝜶⊤

0 𝑿,
then the semiparametric model (1) reduces to the modi-
fied covariates model assumed in Tian et al. (2014) (see
also Murphy, 2003; Lu et al., 2011; Shi et al., 2016, 2018;
Jeng et al., 2018):

𝐸[𝑌 ∣ 𝑿, 𝑇 = 𝑡] = 𝜇(𝑿) + 𝜶⊤
0 𝑿(𝑡 + 𝜋1 − 2) (𝑡 = 1, 2),

(2)
for some 𝜶0 ∈ ℝ𝑝, which assumes a linear form for the
𝑇-by-𝑿 interaction effects.
For model (1), to estimate the interaction effect terms

𝑓𝑡(𝜶
⊤
0 𝑿) (𝑡 = 1, … , 𝐿) in the presence of the unspeci-

fied main effect 𝜇(𝑿), we propose to utilize a working
model:

𝐸[𝑌 ∣ 𝑿, 𝑇 = 𝑡] ≈ 𝑔𝑡(𝜶
⊤𝑿) (𝑡 = 1, … , 𝐿), (3)

for 𝜶 ∈ Θ, subject to the constraint:

𝐸[𝑔𝑇(𝜶⊤𝑿) ∣ 𝑿] =

𝐿∑
𝑡=1

𝜋𝑡𝑔𝑡(𝜶
⊤𝑿) = 0 (4)

almost surely, for all 𝜶 ∈ Θ. The constraint (4) is imposed
on the treatment 𝑡-specific smooth link-functions
(𝑔1, … , 𝑔𝐿) of the working model (3). Even if (3) does not
generally provide a good approximation to the underlying
model (1), in Section 3.3 we will show, through the con-
sistency results (Theorem 1 and Corollary 1), that (3) is a
useful model for estimating the interaction effect terms
𝑓𝑡(𝜶

⊤
0 𝑿) (𝑡 = 1, … , 𝐿) of model (1).

In a least squares framework for model (3)

𝐸
[(

𝑌 − 𝑔𝑇(𝜶⊤𝑿)
)2

∕2
]

∝ 𝐸
[
𝑌𝑔𝑇(𝜶⊤𝑿) − 𝑔2

𝑇(𝜶⊤𝑿)∕2
]

= 𝐸
[
{𝜇(𝑿) + 𝑓𝑇(𝜶⊤

0 𝑿)}𝑔𝑇(𝜶⊤𝑿) − 𝑔2
𝑇(𝜶⊤𝑿)∕2

]
= 𝐸

[
𝐸
[
𝜇(𝑿)𝑔𝑇(𝜶⊤𝑿)

+𝑓𝑇(𝜶⊤
0 𝑿)𝑔𝑇(𝜶⊤𝑿) − 𝑔2

𝑇(𝜶⊤𝑿)∕2 ∣ 𝑿
]]

, (5)

the condition (4) ensures that the cross-product term
𝐸[𝜇(𝑿)𝑔𝑇(𝜶⊤𝑿)|𝑿] vanishes to 0, and the part relevant to
the estimation of the working model (3) is independent
of the unspecified main effect 𝜇(𝑿). This independence
implies that optimization of the unspecified component
𝜇(𝑿) and the working model (3) can be performed sepa-
rately. As model (3) does not require specification of 𝜇(𝑿),
working with (3) sidesteps issues that would arise if 𝜇(𝑿)

were to be misspecified.
We call model (3) a constrained single-index model with

multiple (ie, treatment 𝑡-specific) link functions, which is
the main working model of this paper.

3 ESTIMATION

3.1 A criterion for fitting the model

To optimize the constrained working model (3), we con-
sider a constrained least squares criterion:

minimize
𝜶,(𝑔1,…,𝑔𝐿)

𝐸
[(

𝑌 − 𝑔𝑇

(
𝜶⊤𝑿

))2
∕2

]

subject to 𝐸
[
𝑔𝑇(𝜶⊤𝑿) ∣ 𝑿

]
= 0 (almost surely),

(6)

where 𝜶 ∈ Θ and each function 𝑔𝑡 is in a suitable function
space in 𝐿2(𝑅).

Proposition 1. For each fixed 𝜶, the minimizer (𝑔1, … , 𝑔𝐿)

of the constrained minimization problem (6) satisfies

𝑔𝑡(𝜶
⊤𝑿) = 𝐸

[
𝑌|𝜶⊤𝑿, 𝑇 = 𝑡

]
− 𝐸

[
𝑌|𝜶⊤𝑿

]
(𝑡 = 1, … , 𝐿),

(7)
almost surely.

The proof of Proposition 1 is in Section A.1 of the Sup-
porting Information. Proposition 1 suggests that solving
(6) to optimize model (3) can be split into the follow-
ing two iterative steps. First, for a fixed 𝜶, find the link-
functions (𝑔1, … , 𝑔𝐿) from expression (7). Second, for a
fixed (𝑔1, … , 𝑔𝐿), solve

argmin
𝜶∈Θ

𝐸
[(

𝑌 − 𝑔𝑇

(
𝜶⊤𝑿

))2
∕2

]
. (8)

These two steps can be iterated until convergence to obtain
a solution of (6). To obtain a sample counterpart of this
population solution, we can insert sample estimates into
this population algorithm, as is done in Hastie and Tibshi-
rani (1999). We will provide the details of this estimation
procedure in Section 3.2, and establish the consistency of
the estimator in Section 3.3.
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3.2 A cubic spline estimator of the
model

To obtain a sample counterpart of the population solu-
tion of (6), we approximate the objective function of (6)
based on sample {(𝑌𝑖, 𝑇𝑖, 𝑿𝑖), 𝑖 = 1, … , 𝑛} (assumed to be
independently and identically distributed across 𝑖). In par-
ticular, we use a nonparametric regression technique to
approximate the solution (𝑔1, … , 𝑔𝐿) in (7) for each fixed
𝜶 ∈ Θ. Although other nonparametric regressionmethods
can also be used, in this paper we focus on a cubic 𝐵-spline
(de Boor, 2001) representation of the solution (𝑔1, … , 𝑔𝐿) in
(7) for each fixed𝜶. Specifically, given each𝜶, the functions
𝑔𝑡 is represented by

𝑔𝑡(𝜶
⊤𝑿) = 𝐵𝑡(𝜶

⊤𝑿)⊤𝜷𝑡 (𝑡 = 1, … , 𝐿), (9)

for some vector 𝜷𝑡 ∈ ℝ𝑑𝑡+4, where 𝐵𝑡(⋅) ∈ ℝ𝑑𝑡+4 is a
set of (𝑑𝑡 + 4) cubic 𝐵-spline basis functions (de Boor
(2001)) defined on the range of the candidate single-index
{(𝜶⊤𝑿𝑖), 𝑖 = 1, … , 𝑛}. We use 𝑑𝑡 to denote the number of
interior knots (placed with equal distance between neigh-
boring knots). The number 𝑑𝑡 depends on the treatment
group sample size: 𝑛𝑡 =

∑𝑛

𝑖=1
1(𝑇𝑖=𝑡). Furthermore, let us

represent the conditional expectation 𝐸[𝑌|𝜶⊤𝑿] in expres-
sion (7) by 𝐸[𝑌|𝜶⊤𝑿] = 𝐵0(𝜶⊤𝑿)⊤𝜷0 for some vector 𝜷0 ∈

ℝ𝑑0+4, where 𝐵0(⋅) ∈ ℝ𝑑0+4 is a set of (𝑑0 + 4) cubic 𝐵-
spline basis functions defined on the range of the can-
didate single-index {(𝜶⊤𝑿𝑖), 𝑖 = 1, … , 𝑛}. We use 𝑑0 num-
ber of interior knots (placed with equal distance between
neighboring knots), and the number 𝑑0 depends on the
sample size 𝑛.
Let 𝑫

(𝑡)
𝜶 (𝑡 = 1, … , 𝐿) denote the treatment 𝑡-specific 𝑛 ×

𝑑𝑡 design matrix, where the 𝑖th row is the 1 × 𝑑𝑡 vector
𝐵𝑡(𝜶

⊤𝑿𝑖)
⊤ if 𝑇𝑖 = 𝑡 and is a row of zeros if 𝑇𝑖 ≠ 𝑡 (𝑖 =

1, … , 𝑛) (𝑡 = 1, … , 𝐿). Let 𝑫
(0)
𝜶 denote the 𝑛 × 𝑑0 design

matrix in which the 𝑖th row is the 1 × 𝑑0 vector 𝐵0(𝜶⊤𝑿𝑖)
⊤

(𝑖 = 1, … , 𝑛). Then, for each fixed 𝜶 ∈ Θ, we approximate
the minimizer (𝑔1, … , 𝑔𝐿) in (7) by the method of least
squares (see Section A.2 of the Supporting Information for
a derivation):

𝑔𝑡(⋅) = 𝐵𝑡(⋅)
⊤(𝑫

(𝑡)⊤
𝜶 𝑫

(𝑡)
𝜶 )−1𝑫

(𝑡)⊤
𝜶(

𝑰𝑛 − 𝑫
(0)
𝜶 (𝑫

(0)⊤
𝜶 𝑫

(0)
𝜶 )−1𝑫

(0)⊤
𝜶

)
𝒀 (𝑡 = 1, … , 𝐿),

(10)

where 𝒀 denotes the 𝑛 × 1 vector of the observed
responses. We define the estimator 𝜶0 for 𝜶0 of model (1)
by

𝜶0 = argmin
𝜶∈Θ

𝑛−1
𝑛∑

𝑖=1

(
𝑌𝑖 − 𝑔𝑇𝑖

(𝜶⊤𝑿𝑖)
)2

∕2, (11)

where (𝑔1, … , 𝑔𝐿) are given in (10). Let us define the associ-
ated estimators (𝑓1, … , 𝑓𝐿) for the treatment-specific func-
tions (𝑓1, … , 𝑓𝐿) of model (1) by

(𝑓1, … , 𝑓𝐿) = (𝑔1, … , 𝑔𝐿) given in (10), computed at 𝜶 =𝜶0.

(12)
We use iteratively re-weighted least squares to solve (11),

repeating the following two steps:

1. Given a current estimate 𝜶 ∈ Θ, compute the functions
(𝑔1, … , 𝑔𝐿) in (10).

2. Given (𝑔1, … , 𝑔𝐿), approximately solve (11), based on a
linear approximation to 𝑔𝑇𝑖

(𝜶⊤𝑿𝑖) (𝑖 = 1, … , 𝑛) at the
current estimate of 𝜶.

The iteration between the two steps continues until con-
vergence of 𝜶 ∈ Θ.We next elaborate Step 2 of this iterative
procedure. For each (the 𝑘th) iterative step, the objective
function in (11) is approximated based on a linear approx-
imation of 𝑔𝑇𝑖

(𝜶⊤𝑿𝑖) at the current (the 𝑘th) iterate, say
𝜶(𝑘) ∈ Θ:

𝑛−1
𝑛∑

𝑖=1

(
𝑌𝑖 − 𝑔𝑇𝑖

(𝜶⊤𝑿𝑖)
)2

∕2

≈ 𝑛−1
𝑛∑

𝑖=1

(
𝑌𝑖 − 𝑔𝑇𝑖

(𝜶(𝑘)⊤𝑿𝑖)

− 𝑔̇𝑇𝑖
(𝜶(𝑘)⊤𝑿𝑖)(𝜶 − 𝜶(𝑘))⊤𝑿𝑖

)2
∕2

= 𝑛−1
𝑛∑

𝑖=1

(
𝑌

∗(𝑘)
𝑖

− 𝜶⊤𝑿
∗(𝑘)
𝑖

)2

∕2, (13)

where the modified responses 𝑌
∗(𝑘)
𝑖

and the modified
regressors 𝑿

∗(𝑘)
𝑖

:

𝑌
∗(𝑘)
𝑖

= 𝑌𝑖 − 𝑔𝑇𝑖
(𝜶(𝑘)⊤𝑿𝑖) + 𝑔̇𝑇𝑖

(𝜶(𝑘)⊤𝑿𝑖)𝜶
(𝑘)⊤𝑿𝑖

𝑿
∗(𝑘)
𝑖

= 𝑔̇𝑇𝑖
(𝜶(𝑘)⊤𝑿𝑖)𝑿𝑖

(14)

and we minimize the right-hand side of (13) over 𝜶 ∈ ℝ𝑝.
The minimizer 𝜶(𝑘+1) is then scaled to satisfy 𝜶(𝑘+1) ∈ Θ.
The algorithm terminates, when ‖(𝜶(𝑘+1) − 𝜶(𝑘))∕𝜶(𝑘+1)‖
is less than a prespecified convergence tolerance.

Remark 1. The objective function of themodified covariates
model (2) (Tian et al., 2014) is

𝑛−1
𝑛∑

𝑖=1

(
𝑌𝑖 − 𝜶⊤𝑿𝑖(𝑇𝑖 + 𝜋1 − 2)

)2
∕2, (15)

in which the terms 𝑿𝑖(𝑇𝑖 + 𝜋1 − 2) are called modified
covariates. By comparing the right-hand side of (13) to (15),
the modified regressors, 𝑿

∗(𝑘)
𝑖

= 𝑔̇𝑇𝑖
(𝜶(𝑘)⊤𝑿𝑖)𝑿𝑖 , take the
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role of the modified covariates of Tian et al. (2014) in updat-
ing 𝜶 for each (the 𝑘th) iterative step. For any set of arbitrary
functions (𝑔1, … , 𝑔𝐿) satisfying the constraint (4), we have
𝐸[𝑔̇𝑇(𝜶(𝑘)⊤𝑿)𝑿|𝑿] = 0 (almost surely) for any 𝜶(𝑘) ∈ Θ,
which is analogous to the condition: 𝐸[𝑿(𝑇 + 𝜋1 − 2)|𝑿] =

0 (almost surely) satisfied by the modified covariates model
(2). These conditions, satisfied by the models, make the parts
relevant to the optimization of 𝜶 in (13) and (15) independent
of the unspecified 𝜇(𝑿) of the underlying models (1) and (2),
respectively, as in (5). This orthogonality is attractive, as the
estimation of the unspecified function 𝜇(𝑿) and the single-
index coefficient 𝜶0 can be performed separately, indepen-
dently of each another. If we restrict the treatment 𝑡-specific
functions 𝑔𝑡 to 𝑔𝑡(𝑢) ∶= 𝑢(𝑡 + 𝜋1 − 2), the objective function
of (11) reduces to (15).

Remark 2. As the weights 𝑔̇𝑇𝑖
(𝜶(𝑘)⊤𝑿𝑖) that define themod-

ified regressors𝑿
(𝑘)∗
𝑖

in (14) depend on the values𝑿𝑖 and the
shape of the link-functions 𝑔𝑇𝑖

(through the first derivatives
𝑔̇𝑇𝑖

), the iterative procedure of optimizing 𝜶 that utilizes the
right-hand side of (13) accounts for the nonlinear interac-
tions captured by the flexible link-functions (𝑔1, … , 𝑔𝐿). This
is in contrast to the constant weights (𝑇𝑖 + 𝜋1 − 2) applied
to 𝑿𝑖 in defining the modified covariates of Tian et al.
(2014).

3.3 Consistency and asymptotic
normality of the estimator

We establish the consistency of the estimator 𝜶0 in (11)
for 𝜶0 and the estimators 𝑓𝑡 in (12) for 𝑓𝑡, where 𝜶0 and
𝑓𝑡 are given in model (1). The theoretical results rely on
those of Wang and Yang (2009), where cubic 𝐵-splines
are used to approximate the link function of their single-
index model. In Wang and Yang (2009), instead of impos-
ing the true mean function to be a function only of a
single-index 𝜽⊤

0 𝑿 ∈ ℝ, that is, 𝐸[𝑌|𝑿] = 𝐸[𝑌|𝜽⊤
0 𝑿] for

some single-index coefficient 𝜽0 ∈ Θ, the authors develop
a root-𝑛 consistent cubic spline estimator of the single-
index coefficient of a single-index model that is robust
against deviations from the exact single-index regression
relationship. Specifically, their target single-index coeffi-
cient 𝜽0 ∈ Θ is defined in terms of the optimal 𝐿2 (single-
index based) approximation to the response 𝑌: 𝜽0 ∶=

argmin
𝜽∈Θ

𝐸[(𝑌 − 𝐸[𝑌|𝜽⊤𝑿])2], rather than in terms of an

exact single-index relationship 𝐸[𝑌|𝑿] = 𝐸[𝑌|𝜽⊤
0 𝑿]. In

what follows, we adopt the results and assumptions of
Wang and Yang (2009), and obtain uniformly consistent
estimators of the conditional expectations 𝐸[𝑌|𝜶⊤𝑿, 𝑇 =

𝑡] (𝑡 = 1, … , 𝐿) and 𝐸[𝑌|𝜶⊤𝑿] appearing on the right-hand

side of (7) (uniformly over 𝜶 ∈ Θ), and establish the root-𝑛
consistency of 𝜶0 in (11) for 𝜶0 of model (1); cubic spline
smoothing of 𝑌(= 𝑌(𝑡)) on (𝜶⊤

0 𝑿, 𝑇 = 𝑡) results in uni-
formly consistent estimators 𝑓𝑡 in (12) for 𝑓𝑡 (𝑡 = 1, … , 𝐿).
We state our assumptions.

Assumption 1. The response 𝑌𝑖 = 𝜇(𝑿𝑖) + 𝑓𝑇𝑖
(𝜶⊤

0 𝑿𝑖) +

𝜖𝑖 (𝑖 = 1, … , 𝑛), where 𝐸[𝜖𝑖|𝑿𝑖, 𝑇𝑖] = 0 and 𝐸[𝜖2
𝑖
|𝑿𝑖, 𝑇𝑖] =

𝜎2
𝑇𝑖

(𝑿𝑖), in which the standard deviation functions 𝜎𝑡(⋅) (𝑡 =

1, … , 𝐿) are bounded below and above by positive constants,
defined on a bounded domain.

Assumption 2. The function 𝐸[(𝑌 − 𝑓𝑇(𝜶⊤𝑿))2] is locally
convex at 𝜶 = 𝜶0.

Assumption 3. The functions 𝜇(⋅) and 𝑓𝑡(⋅) in (1) have
fourth-order continuous derivatives.

Assumption 4. The covariate𝑿 is bounded, that is, ‖𝑿‖ ≤

𝑐, for some 𝑐 > 0. The density function of 𝑿 has a fourth-
order continuous derivative, and is bounded above and
below by positive constants, defined on a bounded domain.

Assumption 5. The number of interior knots 𝑑𝑡 used in
representing the function 𝑔∗∗

𝜶,𝑡(𝑢) ∶= 𝐸[𝑌|𝜶⊤𝑿 = 𝑢, 𝑇 = 𝑡]

satisfies 𝑛
1∕6
𝑡 ≪ 𝑑𝑡 ≪ 𝑛

1∕5
𝑡 (log(𝑛𝑡))

−(2∕5)(𝑡 = 1, … , 𝐿). The
number of interior knots 𝑑0 used in representing the
function 𝑔∗

𝜶(𝑢) ∶= 𝐸[𝑌|𝜶⊤𝑿 = 𝑢] satisfies 𝑛1∕6 ≪ 𝑑0 ≪

𝑛1∕5(log(𝑛))−(2∕5).

Assumption 1 on the standard deviation functions 𝜎𝑡(⋅)

and Assumption 3 on the underlying regression functions
are typical in the nonparametric smoothing literature; see,
for instance, Hardle et al. (1993); Xia et al. (2002). Assump-
tion 4 on the distribution of 𝑿 is also assumed in Wang
and Yang (2009). Assumption 5 gives the requirement for
the numbers of interior knots for the cubic spline spaces
in approximating the conditional expectations specified on
the right-hand side of (7), and is needed to ensure the uni-
form convergence of the approximated criterion function
in (11) to its population counterpart in (8) over 𝜶 ∈ Θ. The
strong consistency of 𝜶0 in (11) to 𝜶0 and 𝑓𝑡 in (12) to 𝑓𝑡 are
given below.

Theorem 1. Under Assumptions 1-5, 𝜶0 → 𝜶0,
almost surely.

Corollary 1. Under Assumptions 1-5,

sup
𝑢∈[0,1]

|||𝑓𝑡(𝑢) − 𝑓𝑡(𝑢)
||| → 0, almost surely (𝑡 = 1, … , 𝐿).

(16)
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In (16), without loss of generality, we take the
domain of the functions 𝑓𝑡 and 𝑓𝑡 to be [0,1], as
𝜶⊤𝑿 (𝜶 ∈ Θ) is bounded under Assumption 4. We
next consider the asymptotic normality of 𝜶0. In the
working model (3), any vector 𝜶 ∈ Θ ⊂ ℝ𝑝 can be
expressed as: 𝜶 = 𝑐(𝝓) ∶= (1, 𝝓⊤)

⊤
∕(1 + ‖𝝓‖2)

1∕2
, for

some vector 𝝓 = (𝜙1, … , 𝜙𝑝−1)⊤ ∈ ℝ𝑝−1. Let 𝑱(𝝓) denote
the 𝑝 × (𝑝 − 1) Jacobian transformation matrix from
𝝓 ∈ ℝ𝑝−1 to 𝜶 ∈ Θ, whose (𝑖, 𝑗)th element is given
by 𝜕𝛼𝑖∕𝜕𝜙𝑗 = −𝛼𝑖𝜙𝑗∕𝐾2, for (𝑖 = 1; 𝑗 = 1, … , 𝑝 − 1),
and 𝜕𝛼𝑖∕𝜕𝜙𝑗 = −𝛼𝑖𝜙𝑗∕𝐾2 + 1∕𝐾, for (𝑖 = 2, … , 𝑝; 𝑗 =

1, … , 𝑝 − 1), where 𝐾 = (1 + ‖𝝓‖2)
1∕2
. As the relation

𝜶 = 𝑐(𝝓) is one-to-one, the parameter vector 𝝓0 ∈ ℝ𝑝−1

corresponding to the coefficient 𝜶0 ∈ Θ of model (1)
can be specified. Let us define the (𝑝 − 1) × (𝑝 − 1)

covariance matrix 𝚺0 = var[Ψ(𝑌𝑖, 𝑇𝑖, 𝑿𝑖|𝝓0)], in which
Ψ(𝑌𝑖, 𝑇𝑖, 𝑿𝑖|𝝓0) ∶= 𝑱⊤(𝝓0){𝑓𝑇𝑖

(𝜶⊤
0 𝑿𝑖) − 𝑌𝑖}𝑓̇𝑇𝑖

(𝜶⊤
0 𝑿𝑖)𝑿𝑖 ,

where 𝜶0 = 𝑐(𝝓0). Let 𝑨0 denote the (𝑝 − 1) × (𝑝 − 1)

matrix of the first derivative of 𝐸[Ψ(𝑌𝑖, 𝑇𝑖, 𝑿𝑖|𝝓)]

with respect to 𝝓 ∈ ℝ𝑝−1 evaluated at 𝝓 = 𝝓0. The
asymptotic normality of the estimator 𝜶0 is given
below.

Theorem 2. Under Assumptions 1-5, 𝑛1∕2(𝜶0 − 𝜶0) →

 (𝟎, 𝑱0𝑨−1
0 𝚺0(𝑱0𝑨−1

0 )⊤) in distribution, where 𝑱0 is the
Jacobian function 𝑱(𝝓) evaluated at 𝝓 = 𝝓0.

The proofs of Theorem 1 and 2 and Corollary 1 are in
Section A.3 of the Supporting Information. Although the
convergence rate of the nonparametric component 𝑓𝑡 in
(12) to 𝑓𝑡 (𝑡 = 1, … , 𝐿) is slower than root-𝑛 (see (A.11) of
the Supporting Information Section A.3) under Assump-
tion 5 on the numbers of interior knots 𝑑𝑡 and 𝑑0, the para-
metric component 𝜶0 can be estimated at a root-𝑛 rate by
letting the numbers of interior knots of the spline smooth-
ing to increase with the sample size at an appropriate rate
(Assumption 5). This indicates that the model can be esti-
mated in two stages: estimation of 𝜶0 by the root-𝑛 con-
sistent 𝜶0; spline smoothing of 𝑌 on 𝜶⊤

0 𝑿 for each 𝑇 = 𝑡

(𝑡 = 1, … , 𝐿) to obtain an estimator 𝑓𝑡 (as given in (12)) of
𝑓𝑡. Under Assumptions 1-5, Theorem 2 states that root-𝑛
rate asymptotic normality for 𝜶0 is achievable, and that the
estimator is as efficient as if the true nonparametric func-
tions 𝑓𝑡 (𝑡 = 1, … , 𝐿) in model (1) were known and used as
the link functions 𝑔𝑡 (𝑡 = 1, … , 𝐿) of theworkingmodel (3).
However, 𝜶0 is generally not the most efficient estimator
(although a root-𝑛 consistent estimator). This is because
𝜶0 is based on a generally misspecified working model (3)
that includes only the𝑇-by-𝑿 interaction effect component
and omits themain effect term.Analogous to the efficiency
augmentation of Tian et al. (2014), the efficiency of the esti-
mator can be improved by incorporating amain effect com-

ponent of 𝑿 to the estimation of 𝜶0 (see Section A.4 of the
Supporting Information).

3.4 An illustration of the consistency
of 𝜶𝟎

In this subsection, we illustrate the effect of the con-
straint (4) on the consistency of 𝜶0 for 𝜶0 using a
simulation experiment. For the purpose of illustra-
tion, we consider a simple case of 𝑝 = 2 and 𝐿 = 2.
We generate {(𝑌𝑖, 𝑇𝑖, 𝑿𝑖), 𝑖 = 1, … 𝑛}, where 𝑇𝑖 takes a
value in {1, 2} with equal probability, independently of
𝑿𝑖 = (𝑋𝑖,1, 𝑋𝑖,2)⊤ ∈ ℝ2, where 𝑋𝑖,1, 𝑋𝑖,2 ∼ independent
unif[−𝜋∕2, 𝜋∕2]. Given 𝑇𝑖 and 𝑿𝑖 , we generate 𝑌𝑖 from
model (1), that is, 𝑌𝑖 = 𝜇(𝑿𝑖) + 𝑓𝑇𝑖

(𝜶⊤
0 𝑿𝑖) + 𝜖𝑖 , with

additive Gaussian noise 𝜖𝑖 , where 𝜎𝑇𝑖
(𝑿𝑖) = 0.2 (see

Assumption 1). We set 𝑛 = 250. We consider two simula-
tion settings. In setting “A,” the 𝑇-by-𝑿 interaction effect
specified in model (1) is nonlinear, and it is defined by

Setting A: 𝑓𝑇𝑖
(𝜶⊤

0 𝑿𝑖) = (−1)𝑇𝑖
(
cos(𝜶⊤

0 𝑿𝑖) − 0.5
)

(𝑖 = 1, … , 𝑛).

In setting “B,” the interaction effect is linear, as defined by

Setting B: 𝑓𝑇𝑖
(𝜶⊤

0 𝑿𝑖) = (−1)𝑇𝑖 𝜶⊤
0 𝑿𝑖∕2.25 (𝑖 = 1, … , 𝑛).

In both settings “A” and “B,” we take the main effect com-
ponent in model (1) to be 𝜇(𝑿; 𝛿) = 𝛿 cos(𝜼⊤𝑿), where
the parameter 𝛿 ∈ {1, 2, 4} regulates the contribution of
the 𝑿 main effect to the variance of 𝑌. In both settings,
the contribution of 𝜇(𝑿; 𝛿) to the variance of 𝑌 is about
0.85, 3.5, and 14 times greater than that of the interaction
effect 𝑓𝑇(𝜶⊤

0 𝑿), for 𝛿 = 1, 𝛿 = 2, and 𝛿 = 4, respectively.
In both settings, 𝜶⊤

0 𝑿 corresponds to the index of interest
(as it is associated with the 𝑇-by-𝑿 interaction effects) and
𝜼⊤𝑿 corresponds to a “nuisance” index (as it is associated
only with the 𝑿 main effects). We set 𝜶0 ∶= (1, 1)⊤∕

√
2

and 𝜼 ∶= (1, −1)⊤∕
√

2. For the purpose of visualization,
we parameterize vectors 𝜶 ∈ Θ ⊆ ℝ2 in terms of an
angle 𝜃 ∈ [−𝜋∕2, 𝜋∕2) such that 𝜶 = (cos(𝜃), sin(𝜃))⊤.
We identify the vectors 𝜶0 and 𝜼 (in Cartesian coordi-
nates) with the angles 𝜃1 = 𝜋∕4 and 𝜃2 = −𝜋∕4 (in polar
coordinates), respectively.
In this simulation example, as a function of 𝜃 ∈

[−𝜋∕2, 𝜋∕2), we illustrate the squared error criterion (ie,
the objective function of (11)) (reparametrized with respect
to 𝜃) of the constrained working model (3). In addition,
we illustrate the squared error criterion of the uncon-
strained working model, which is model (3) but with-
out enforcing the constraint (4). For comparison, we also
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F IGURE 1 The averaged criterion functions of 𝜃 ∈ [−𝜋∕2, 𝜋∕2) averaged over 200 simulated data sets. The vector 𝜶0 corresponds to the
angle 𝜃1 = 𝜋∕4 that is indicated by the gray dashed vertical line, and the “nuisance” vector 𝜼 corresponds to the angle 𝜃2 = −𝜋∕4 indicated by
the gray dotted vertical line. The criteria and their corresponding line styles: (1) the constrained single-index criterion (the red solid curves); (2)
the unconstrained single-index criterion (the green dotted curves); (3) the modified covariates criterion (the blue dashed curves).

include the modified covariates squared error criterion
(15) (reparametrized with respect to 𝜃, by setting 𝜶 =

𝛾(cos(𝜃), sin(𝜃))⊤, inwhich 𝛾 ∈ ℝ is “profiled out” for each
value of 𝜃 under the squared error criterion).
We simulate 200 data sets and average the values of these

three criterion functions for each value of 𝜃 ∈ [−𝜋∕2, 𝜋∕2)

(evaluated on a dense grid). Then each of the averaged cri-
terion functions is scaled to have height 1. In Figure 2, the
resulting averaged criterion functions are displayed for set-
ting “A” on the top row, and the setting “B” on the bot-
tom row.
In Figure 1, for all three cases of 𝛿 = 1, 𝛿 = 2, and 𝛿 = 4,

the constrained criterion (the red solid lines) has a “cor-
rect” global minimum at 𝜃1 = 𝜋∕4, implying that the min-
imization of this constrained criterion would lead to cor-
rectly identifying the 𝑇-by-𝑿 interaction effect coefficient
𝜶0. The unconstrained criterion (the green dotted lines)
has a correct minimum at 𝜃1 = 𝜋∕4 for the case 𝛿 = 1

(ie, when the main effect is relatively small), however,
as the main effect intensity parameter 𝛿 increases (from
𝛿 = 1 to 𝛿 = 2 and to 𝛿 = 4), the unconstrained criterion
function takes its global minimum at the nuisance angle
𝜃2 = −𝜋∕4, implying that the minimization of the uncon-

strained criterion would lead to an inconsistent estimate
of 𝜶0. Under the linear interaction effect (setting “B”), the
constrained single-index regression criterion takes the con-
sistent global minimum at 𝜃1 = 𝜋∕4 for all three cases of
𝛿 = 1, 𝛿 = 2, and 𝛿 = 4. On the other hand, the uncon-
strained criterion has its global minimum at the nuisance
angle 𝜃2 = −𝜋∕4, for the cases 𝛿 = 2 and 𝛿 = 4 (ie, when
the main effect dominates the interaction effect).
This example has illustrated that the proposed con-

strained single-index regression criterion consistently
takes its global minimum near the “signal” direction 𝜶0

associated with the 𝑇-by-𝑿 interaction effect, even when
the interaction effect signal is weak, unlike the case of the
unconstrained criterion. In the linear interaction scenario
(setting “B”), the modified covariates model (2) also pro-
duces a consistent estimate of the “signal” direction 𝜶0

as, in this case, the modified covariates model is correctly
specified and is a special case of the proposed constrained
single-index model (1). However, when the interaction
effect is nonlinear (scenario “A”), the modified covariates
criterion does not provide relevant information for mod-
eling the 𝑇-by-𝑿 interaction effects, as it takes its global
minimum away from 𝜶0.



PARK et al. 513

F IGURE 2 Boxplots comparing five approaches to estimating opt, given each scenario indexed by 𝜉 ∈ {0, 0.5} and 𝛿 ∈ {1, 2}, for the
simulation setting “A” in the top panels and the setting “B” in the bottom panels. For each scenario, from left to right, estimation approaches
for opt: (1) the constrained single-index model (red); (2) the modified covariates model (green); (3) the outcome weighted learning with a
linear kernel (violet); (4) the outcome weighted learning with a Gaussian kernel (purple); (5) the penalized spline least squares approach (dark
purple). The case with 𝜉 = 0 (or 𝜉 = 0.5) corresponds to the correctly specified (or misspecified) single-index interaction model scenario; 𝛿 = 1

(or 𝛿 = 2) corresponds to the moderate (or large) main effect scenario. The dotted horizontal line represents the optimal value corresponding
toopt.

4 SIMULATION STUDIES

In this section, we perform numerical studies to illus-
trate the performance of the proposed approach to opti-
mizing individualized treatment rules, in comparisonwith
alternative approaches including the modified covariates
approach of Tian et al. (2014) and the outcome weighted
learning method of Zhao et al. (2012).
We consider 𝑝 = 10 with 𝑛 ∈ {250, 500}. We gen-

erate covariates 𝑿𝑖 ∈ ℝ𝑝 consisting of independent
unif[−𝜋∕2, 𝜋∕2] variates (a correlated covariate case
is considered in Supporting Information Section B.5),
and the treatment variable 𝑇𝑖 takes a value in {1, 2} with
equal probability, independently of 𝑿𝑖 . We generate the
treatment outcome 𝑌𝑖(= 𝜇(𝑿𝑖) + 𝑓𝑇𝑖

(𝑿𝑖) + 𝜖𝑖) from (1) the
simulation setting “A”:

𝑌𝑖 = 0.8𝛿 cos(𝜼⊤𝑿𝑖)

+ (−1)𝑇𝑖

{
𝑒−(𝜶⊤

0
𝑿𝑖−0.5)2−(𝜶⊤

1
𝑿𝑖−0.5)2𝜉 − 0.5

}
+ 𝜖𝑖

(𝑖 = 1, … , 𝑛), (17)

where the first term 𝜇(𝑿; 𝛿) ∶= 0.8𝛿 cos(𝜼⊤𝑿) (𝛿 = 1, 2)

corresponds to the main effect of 𝑿, and the second term
𝑓𝑇(𝑿; 𝜉) ∶= (−1)𝑇{𝑒−(𝜶⊤

0
𝑿−0.5)2−(𝜶⊤

1
𝑿)2𝜉 − 0.5} (𝜉 = 0, 0.5)

corresponds to the 𝑇-by-𝑿 interaction effect, determined
by a bell-shaped (ie, Gaussian) surface over two one-
dimensional indices, 𝜶⊤

0 𝑿 and 𝜶⊤
1 𝑿 (if 𝜉 ≠ 0), which non-

linearly modifies the effect of the variable 𝑇 on the out-
come 𝑌. We also consider (2) the simulation setting “B”:

𝑌𝑖 = 𝛿 cos(𝜼⊤𝑿𝑖)

+ (−1)𝑇𝑖
{

cos
(
(𝜶0 + 𝜶1𝐼(𝑇𝑖=2)𝜉)⊤𝑿𝑖 − 𝜋∕8

)
− 0.5

}
+ 𝜖𝑖

(𝑖 = 1, … , 𝑛), (18)

where the first term 𝜇(𝑿; 𝛿) ∶= 𝛿 cos(𝜼⊤𝑿) (𝛿 = 1, 2)

determines the 𝑿 main effect, and the second term
𝑓𝑇(𝑿; 𝜉) ∶= (−1)𝑇{cos((𝜶0 + 𝜶1𝐼(𝑇=2)𝜉)⊤𝑿𝑖 − 𝜋∕8) − 0.5}

(𝜉 = 0, 0.5) determines the 𝑇-by-𝑿 interaction effect,
which is defined based on different single indices for each
treatment, that is, 𝜶⊤

0 𝑿 for 𝑇 = 1 and (𝜶0 + 𝜶1𝜉)⊤𝑿 for
𝑇 = 2, when 𝜉 ≠ 0.



514 PARK et al.

Both models (17) and (18) are indexed by a pair (𝜉, 𝛿):
the parameter 𝜉 ∈ {0, 0.5} determines whether the 𝑇-by-
𝑿 interaction effect term 𝑓𝑇(𝑿; 𝜉) in models (17) and
(18) has an intrinsic one-dimensional structure over the
single index 𝜶⊤

0 𝑿 (𝜉 = 0) or whether it deviates from
a single-index model structure (𝜉 = 0.5); the parameter
𝛿 ∈ {1, 2} in 𝜇(𝑿; 𝛿) controls the contribution of the 𝑿

main effect on the variance of 𝑌, where 𝛿 = 1 repre-
sents a relatively moderate 𝑿 main effect (contributing
about the same variance as the interaction effect does)
and 𝛿 = 2 a relatively large 𝑿 main effect (about 4 times
greater than the interaction effect), respectively. In both
(17) and (18), we use additive noise 𝜖𝑖 (see Assump-
tion 1) that follows the mean zero Gaussian distribu-
tion with standard deviation 0.5. In models (17) and
(18), we set the vectors 𝜼 = (−1, 1, −1, 1, −1, 1, 0, 0, 0, 0)⊤,
𝜶0 = (1, 0.5, 0.25, 0.125, 0, 0, 0, 0, 0, 0)⊤, and 𝜶1 = (1, 1, 1,

1, 1, 1, 0, 0, 0, 0)⊤, with each of these length 𝑝(= 10) vec-
tors normalized to have unit norm. Without loss of
generality, we assume that a larger value of 𝑌 is
preferred.
For the case of a single decision time point, an indi-

vidualized treatment rule, which we denote as (𝑿) ∶

ℝ𝑝 ↦ {1, … , 𝐿}, is a rule that maps an individual with
(baseline) characteristics 𝑿 to one of the 𝐿 available treat-
ment options. One natural measure for the effectiveness
of  is called the value (𝑉) of  (Qian and Murphy
(2011)) defined as the expectedmean response when every-
one in the population receives treatment according to the
rule , that is, 𝑉() = 𝐸[𝐸[𝑌|𝑿, 𝑇 = (𝑿)]]. The opti-
mal individualized treatment rule, which we denote as
opt, resulting in the largest value of 𝑉 is: opt(𝑿) =

arg max𝑡∈{1,…,𝐿} 𝐸[𝑌|𝑿, 𝑇 = 𝑡]. Accordingly, the estimators
̂opt for opt are: ̂opt(𝑿) = arg max𝑡∈{1,…,𝐿} 𝑓𝑡(𝜶

⊤
0 𝑿) and

̂opt(𝑿) = arg max𝑡∈{1,…,𝐿} 𝜶⊤
0 𝑿(𝑡 + 𝜋1 − 2), for models (1)

and (2), respectively. Here, the estimators 𝜶0 and 𝑓𝑡 for
model (1) correspond to the proposed estimators (11) and
(12), and the estimator 𝜶0 for model (2) corresponds to the
minimizer of (15).
The methods for estimating opt under comparison

include:

1. The proposed method of using model (3), estimated
through the procedure described in Section 3.2. We use
the numbers of interior knots 𝑑𝑡 = [𝑛

1∕5.5
𝑡 ] (𝑡 = 1, 2)

and 𝑑0 = [𝑛1∕5.5], which satisfy Assumption 5. Here, [𝑢]

denotes the integer part of 𝑢.
2. The modified covariates method of Tian et al. (2014) of

using model (2), estimated by minimizing (15).
3. The outcome weighted learning method (Zhao et al.,

2012) based on a linear kernel, implemented in the
R-package DTRlearn. To improve its efficiency, we

employ the augmented outcome weighted learning
approach of Liu et al. (2018). The tuning parameter
𝜅 in Zhao et al. (2012) is chosen from the grid of
(0.25, 0.5, 1, 2, 4) (the default setting of DTRlearn) based
on a fivefold cross-validation.

4. The same approach as in (3) but based on a Gaus-
sian radial basis function kernel instead of a lin-
ear kernel. The inverse bandwidth parameter 𝜎2

𝑛

in Zhao et al. (2012) is chosen from the grid of
(0.01, 0.02, 0.04, … , 0.64, 1.28) and 𝜅 is chosen from the
grid of (0.25, 0.5, 1, 2, 4), based on a fivefold cross-
validation.

5. A penalized additive cubic spline least squares (PLS)
approach. We implement this method by estimating
𝐸[𝑌|𝑿, 𝑇 = 𝑡] via an additive regression for each treat-
ment separately. The implementational detail is given
in Section B.4 of Supporting Information.

For each simulation run, we estimate opt from each
of the five methods based on a training set (of size 𝑛),
and for evaluation of these methods, we evaluate the value
𝑉(̂opt) = 𝐸[𝐸[𝑌|𝑿, 𝑇 = ̂opt(𝑿)]] for each estimate ̂opt,
using a Monte Carlo approximation based on a random
sample of size 103, denoted as 𝑉(̂opt). As we know the
true data-generating model in simulation studies, the opti-
malopt can be determined for each simulation run.Given
each estimate ̂opt of opt, we report 𝑉(̂opt) − 𝑉(opt),
as the performance measure of ̂opt. A larger value of the
measure indicates better performance.
In Figure 2, we present the boxplots, obtained from

100 simulation runs, of the normalized values 𝑉(̂opt)

(normalized by the optimal values 𝑉(opt)) of the deci-
sion rules ̂opt estimated from the five approaches, for
each combination of 𝑛 ∈ {250, 500}, 𝜉 ∈ {0, 0.5} (corre-
sponding to correctly specified or misspecified single-index
interaction effect models, respectively) and 𝛿 ∈ {1, 2}

(corresponding to moderate or large main effects, respec-
tively), for the simulation setting “A” in the top panels and
the setting “B” in the bottom panels.
The results in Figure 2 indicate that the proposed

constrained single-index model outperforms all other
approaches in estimating opt. With substantial nonlin-
earity in the interaction effect term of the models (17) and
(18), the modified covariates method, which assumes a
restricted linear model on the interaction term, is clearly
outperformed by the proposed model that utilizes a set
of flexible link functions to accommodate the nonlinear
treatment effect modification. The estimated values of the
outcome weighted learning with a linear kernel and a
Gaussian kernel, respectively, are similar to each other,
but both are outperformed by the constrained single-index
regression, even when the true interaction model deviates
from a single-index model (when 𝜉 = 0.5). When 𝑛 = 500
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(ie, with a relatively large sample size) and 𝜉 = 0.5 (ie,
when the underlyingmodel deviates from the exact single-
index structure), the penalized additive spline approach
(PLS), due to its large model space, outperforms the mod-
ified covariates method slightly; however, the approach is
clearly outperformed by the proposed single-indexmethod
that is robust to the main effect model misspecification
and also allows nonlinear interactions. When the 𝑿 main
effect dominates the 𝑇-by-𝑿 interaction effect (ie, when
𝛿 = 2), although the increased magnitude of the main
effect dampens the performance of all approaches to opti-
mizing treatment decisions, the constrained single-index
regression consistently targets to model the interaction
effect-related variability, and its performance is near opti-
mal when 𝑛 = 500.

5 APPLICATION TO DATA FROMA
DEPRESSION RANDOMIZED CLINICAL
TRIAL

The development of the constrained single-index model
method was motivated by a randomized clinical trial com-
paring an antidepressant (𝑇 = 2) and placebo (𝑇 = 1) for
treatingmajor depressive disorder. The primary purpose of
the study is the development of a biosignature, called a dif-
ferential treatment response index, defined as a combina-
tion of multiple biomarkers that can be used for optimiza-
tion of an individualized treatment rule for patients with
major depressive disorder (Trivedi et al., 2016). In major
depressive disorder, each patient characteristic often has
at most a weak modifying effect. Therefore, the proposed
single-index modeling approach that creates a differential
treatment response single-index that collectively exhibits
a stronger, and possibly nonlinear, interaction with the
treatment is a very clinically significant endeavor.
Of the 166 subjects, 88 were randomized to placebo

and 78 to drug. Pretreatment clinical characteristics 𝑿 =

(𝑋1, … , 𝑋5)⊤ include:𝑋1 = age at evaluation;𝑋2 = severity
of depressive symptoms measured by the Hamilton rating
scale at baseline;𝑋3 = logarithm of duration (in month) of
the current major depressive episode. In addition, patients
underwent neuropsychiatric testing at baseline to assess
reaction time, 𝑋4 = median choice reaction time and cog-
nitive control, 𝑋5 = Flanker accuracy, as these behavioral
characteristics are believed to correspond to biological phe-
notypes related to response to antidepressants (Trivedi
et al., 2016). For the purposes of regularization, all pretreat-
ment covariates are centered and scaled to have mean 0
and unit variance. The outcome 𝑌 is the improvement in
symptoms severity (assessed by the Hamilton rating scale
for depression) from baseline to week 8 taken as the dif-

ference (week 0 to week 8), and thus larger values of the
outcome are considered desirable.
The estimated single-index coefficients 𝜶 = (𝛼̂1, … , 𝛼̂5)⊤

of the proposed model (1) and their 95% normal approx-
imation bootstrap confidence intervals based on 500
bootstrap replications (see Supporting Information
Section B.6 for the coverage proportions of the boot-
strap confidence intervals assessed by simulations) are
given by 𝛼̂1 = 0.69(0.31, 1.06), 𝛼̂2 = 0.23(−0.10, 0.57),
𝛼̂3 = 0.33(0.03, 0.64), 𝛼̂4 = −0.22(−0.51, 0.08), and
𝛼̂5 = −0.55(−0.85, −0.25), respectively. The estimated
treatment 𝑡-specific functions 𝑓𝑡(⋅) (𝑡 = 1, 2) (with 95%
confidence bands, given 𝜶) are illustrated in the first two
panels of Figure 3.
The right panel of Figure 3 displays the contrast between

the two estimated treatment effects (drug - placebo) versus
the estimated single-index. This indicates that the superi-
ority of the drug over placebo does not linearly increase
with 𝑧 = 𝜶⊤𝑿, but rather, it appears to plateau out with
some nonlinear patterns to the right of the zero crossing
point near 𝑧 = −0.7, and it has another zero crossing point
near 𝑧 = 2.4. As implied by the contrast plot in Figure 3,
an individualized treatment rule based on the single-index
𝑧 = 𝜶⊤𝑿 can be constructed by assigning patients with the
index −0.7 < 𝑧 < 2.4 to the active drug.
To evaluate the performance of the individualized treat-

ment rules (̂opt) estimated from five different approaches
described in Section 4, we randomly split the data set
at a ratio of 5 to 1 into a training set and a testing set
(of size 𝑛̃), replicated 500 times, each time obtaining
̂opt based on the training set and estimating the value
of ̂opt, 𝑉(̂opt) = 𝐸[𝐸[𝑌|𝑿, 𝑇 = ̂opt(𝑿)]], by an inverse
probability weighted estimator (Murphy, 2005) 𝑉(̂opt) =∑𝑛

𝑖=1
𝑌𝑖1(𝑇𝑖=̂opt(𝑿𝑖))

∕
∑𝑛

𝑖=1
1(𝑇𝑖=̂opt(𝑿𝑖))

based on the test-
ing set (of size 𝑛). For the modified covariates method,
we use a linear model with covariates 𝑿 for efficiency
augmentation. For comparison, we also include two naïve
rules: treating all patients with placebo; and treating all
patients with the active drug, each regardless of the indi-
vidual patient’s characteristics 𝑿.
As Figure 4 shows, the proposed constrained single-

index regression for estimatingopt outperforms all other
alternatives in terms of the average estimated values.
In particular, the approach outperforms the modified
covariates method and the outcome weighted learning
with a linear kernel, illustrating the utility of the flexible
treatment-specific link functions in approximating the
nonlinear interactions. The method also outperforms
the penalized additive spline least squares approach,
suggesting that estimating and utilizing an optimal linear
combination (a single-index 𝜶⊤𝑿) of biomarkers that
collectively exhibits a stronger (and possibly nonlinear)



516 PARK et al.

F IGURE 3 Depression randomized clinical trial: scatter plots of the outcome against the estimated single index 𝑧 = 𝜶⊤𝑿, for the placebo
group (𝑇 = 1, in the left panel) and the drug group (𝑇 = 2, in the middle panel); the estimated treatment-specific curve (with 95% confidence
bands) for each group is overlaid (the red solid curve). In the right panel, the contrast between the estimated two treatment effects (drug −

placebo) as a function of the estimated single-index is displayed.

F IGURE 4 Depression randomized clinical trial: boxplots of the estimated values of the individualized treatment rules estimated from
seven approaches, obtained from 500 randomly split testing sets. From left to right, estimation approaches to opt: (1) the constrained single-
index model; (2) the modified covariates model; (3) outcome weighted learning with a linear kernel; (4) outcome weighted learning with a
Gaussian kernel; (5) the penalized spline least squares approach; (6) treating all patients with placebo; (7) treating all patients with the active
drug.

interaction with the treatment is practically an appealing
approach to optimizing treatment decision rules. In this
example, the outcome weighted learning with a Gaussian
kernel does not perform well.
The proposed single-index regression provides a visu-

alization of the estimated single-index as shown in the
panels of Figure 3, and the relative importance of each
pretreatment covariate in terms of characterizing the
heterogeneous treatment responses can be indicated by
the coefficients (𝛼1, … , 𝛼5)⊤. The practical utility of the
proposed methodology is highlighted here by noting
that the difference between the values of the treatment
decision rule based on the new method and the values of
the naïve rule that treats everyone with the drug is almost

twice as large as the difference between the efficacies of
the drug and placebo.

6 DISCUSSION

The proposed method is primarily designed to analyze
data from randomized clinical trials. A limitation of
the proposed method can occur when applying it to an
observational study, where the covariates and treatment
assignment can be correlated, in which case the esti-
mator ̂opt(𝑿) = arg max𝑡∈{1,…,𝐿} 𝑓𝑡(𝜶

⊤
0 𝑿) might not yield

the optimal decision rule. However, the working model
(3), with the link functions (𝑔1, … , 𝑔𝐿) as defined in (7),
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can still be useful in fitting the 𝑇-by-𝑿 interaction effect
term of model (1). If there are estimators (𝑔1, … , 𝑔𝐿),
for each fixed 𝜶, that asymptotically satisfy (7), then, in
the objective function (6), the part relevant to the esti-
mation of the coefficient 𝜶0 of model (1) is asymptot-
ically separated from the 𝑿 main effect term 𝜇(𝑿) of
model (1), as in (5), resulting in robustness against mis-
specification of the 𝑿 main effects in estimating the 𝑇-
by-𝑿 interactions. We can utilize an iterative optimiza-
tion procedure to optimize both 𝜶 and (𝑔1, … , 𝑔𝐿). For
each fixed 𝜶, estimators of (𝑔1, … , 𝑔𝐿) that asymptoti-
cally satisfy (7) are relatively easy to obtain. For example,
we can first compute unconstrained estimators, denoted
as 𝑔∗∗

𝑡 (𝜶⊤𝑿) (𝑡 = 1, … , 𝐿), of the conditional expecta-
tions 𝑔∗∗

𝑡 (𝜶⊤𝑿) = 𝐸[𝑌|𝜶⊤𝑿, 𝑇 = 𝑡] (𝑡 = 1, … , 𝐿), based on
a one-dimensional (along the axis 𝜶⊤𝑿) nonparametric
smoother for each treatment 𝑇 = 𝑡 (𝑡 = 1, … , 𝐿), and then
remove the component in the fitted 𝑔∗∗

𝑇 (𝜶⊤𝑿) correspond-
ing to the main effect of 𝜶⊤𝑿, by fitting a one-dimensional
nonparametric smoother (along the axis 𝜶⊤𝑿), denoted as
𝑔∗(𝜶⊤𝑿), to the fitted 𝑔∗∗

𝑇 (𝜶⊤𝑿). Then, for each fixed 𝜶,
we can take 𝑔𝑡(𝜶

⊤𝑿) = 𝑔∗∗
𝑡 (𝜶⊤𝑿) − 𝑔∗(𝜶⊤𝑿) (𝑡 = 1, … , 𝐿)

as such estimators (𝑔1, … , 𝑔𝐿), which approximately satisfy
(7). See Supporting Information Section A.6 for a justifica-
tion for the robustness of this procedure against misspeci-
fication of 𝜇(⋅). However, when 𝑇 depends on 𝑿, the fitted
𝑇-by-𝑿 interaction effect termmight result in biased causal
effect estimates, as described in Supporting Information
Section A.7.
In many applications, only a subset of measurements

may be useful in determining an optimal treatment
decision rule. Also, high-dimensional settings can lead to
instabilities and issues of overfitting. Forthcoming work
will introduce a regularizationmethod that can both avoid
overfitting and choose among multiple potential covari-
ates by obtaining a sparse estimate of the single-index
coefficient 𝜶0. In this paper, the theoretical results are
developed with a 𝐵-spline basis approximation, with the
number of knots used as the tuning parameters. In finite
samples, the choice of the number of knots can be crucial
and delicate. At present an ad hoc choice of 𝑑𝑡 = ⌊𝑛

1∕5.5
𝑡 ⌋

and 𝑑0 = ⌊𝑛1∕5.5⌋ is used for the number of knots, which
is likely to be sub-optimal in practice (note that one can set
𝑑𝑡 = 𝐶⌊𝑛

1∕5.5
𝑡 ⌋ or 𝑑0 = 𝐶⌊𝑛1∕5.5⌋ with an arbitrary 𝐶 > 0

while still achieving the requirements in Assumption 5).
In practice, a penalized spline approximation, for exam-
ple, P-splines (Eilers and Marx, 1996), can be considered,
which is relatively robust to the choice of the number of
knots. Although in Section 3.3, Assumption 4 does not
allow discrete-valued covariates, our simulation experi-
ment (see Supporting Information Section B.2) where the
covariates 𝑿 include a binary variable suggests that esti-

mation in practice is rather insensitive to departure from
this assumption. Generally, multiple local optima exist in
the squared error criterion in (11) (and also its population
counterpart in (6) with respect to 𝜶, where 𝑔𝑡 is defined
in (7)), and in such cases the estimates can be sensitive to
the choice of initialization. We assume (in Assumption 1)
the local convexity of the criterion function near 𝜶 = 𝜶0,
and this implies that the algorithm will converge if the
initial estimate is close to 𝜶0. Otherwise, the estimate 𝜶0

can be sub-optimal. One way to mitigate this problem is
to consider multiple initial points for 𝜶0 in estimation (as
in Supporting Information Section B.2 and B.3). In this
paper, we use a linear estimate based on the modified
covariates linear model (2) (scaled to be in Θ) as an initial
estimate, and the estimate 𝜶0, optimized to incorporate
possibly nonlinear interactions, provides a significant
improvement over the modified covariate initial estimate,
as illustrated by the simulations in Section 4.
Future directions of this work also include an exten-

sion of the proposed regression to a multiple-index regres-
sion for modeling interactions. For example, when 𝐿 = 2,
model (1) can be extended to a partially linear single-index
model (eg, Lian and Liang, 2016; Xia et al., 1999) by adding
amodified covariate (Tian et al., 2014) linear component to
the single-index interaction component.Wewill also inves-
tigate the incorporation of functional covariates and longi-
tudinal outcomes.
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in Sections 3-6 are available with this paper at the Biomet-
rics website on Wiley Online Library. An R code demon-
strating the method described in this article is also avail-
able there. The R package simml (Park et al., 2019) avail-
able on CRAN (R Development Core Team, 2019) provides
an implementation of the proposed method.
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