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SUMMARY
This paper presents a Bayesian reformulation of covariate-assisted principal regression for covariance
matrix outcomes to identify low-dimensional components in the covariance associated with covariates.
By introducing a geometric approach to the covariance matrices and leveraging Euclidean geometry, we
estimate dimension reduction parameters and model covariance heterogeneity based on covariates. This
method enables joint estimation and uncertainty quantification of relevant model parameters associated
with heteroscedasticity. We demonstrate our approach through simulation studies and apply it to analyze
associations between covariates and brain functional connectivity using data from theHumanConnectome
Project.
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1. IN TRODUCTION
This paper reformulates covariate-assisted principal (CAP) regression of Zhao et al. (2021b) in
the Bayesian paradigm. The approach identifies covariate-relevant components of the covariance
of multivariate response data. Specifically, the method estimates a set of linear projections of
multivariate response signals, whose variance is related to external covariates. In neuroscience,
there is interest in analyzing statistical dependency between time-series of brain signals from
distinct regions of the brain, which we refer to as functional connectivity (FC) (Lindquist 2008;
Fornito and Bullmore 2012; Fornito et al. 2013; Monti et al. 2014; Fox and Dunson 2015). The
brain signals underling FC are multivariate, and each brain activity is considered relative to others
(Varoquaux et al. 2010) in analyzing FC, as this statistical dependency is related with behavioral
characteristics (covariates). This paper develops a Bayesian approach to conducting supervised
dimension reduction for the response signals, to analyze the association between external covariates
and the FC characterized by the multivariate signals’ covariances.
Typically, the first step to analyze brain FC is to define a set of nodes corresponding to

spatial regions of interest (ROIs), where each node is associated with its own time course
of imaging data. Then the network connections (or an “edge” structure between the nodes)
are subsequently estimated based on the statistical dependency between each of the nodes’
time course (van der Heuvel and Hulshoff Pol 2010; Friston 2011). FC networks have been
inferred using Pearson’s correlation coefficients (Hutchison et al. 2013) and also with partial
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correlations in the context of Gaussian graphical models (Whittaker 1990; Hinne et al. 2014)
summarized in the precision or inverse covariance matrix. In recent years, there has been a focus
on subject-level graphical models where the node-to-node dependencies vary with respect to
subject-level covariates. This line of research involves methods to estimate or test group-specific
graphs (Guo et al. 2011; Danaher et al. 2014; Narayan et al. 2015; Peterson et al. 2015; Xia et al.
2015; Cai et al. 2016; Saegusa and Shojaie 2016; Lin et al. 2017; Tan et al. 2017; Xia and Li 2017;
Durante and Dunson 2018; Xia et al. 2018) as well as general Gaussian graphical models for graph
edges that allow both continuous and discrete covariates, estimated based on trees (Liu et al.
2010), kernels (Kolar et al. 2010; Lee and Xue 2018), linear or additive regression (Ni et al. 2019;
Wang et al. 2022; Zhang and Li 2023).However, like other standard node-wise regressionmethods
(e.g. Meinshausen and Buhlmann 2006; Peng et al. 2009; Kolar et al. 2010; Cheng et al. 2014;
Leday et al. 2017; Ha et al. 2021) in Gaussian graphical models, these approaches focus on edge
detection (i.e. estimation of the off-diagonal elements) rather than estimating the full precision or
covariance matrix and do not explicitly constrain positive definiteness of precision or covariance
matrices. Works on general tensor outcome regression (Li and Zhang 2017; Sun and Li 2017; Lock
2018) also do not generally guarantee the positive definiteness of the outcomes.While the problem
of dimension reduction of individual covariances has been studied in brain dynamic connectivity
analysis (Dai et al. 2020), problems in computer vision (Harandi et al. 2017; Li and Lu 2018;
Gao et al. 2023) and brain computer interfaces (Davoudi et al. 2017; Xie et al. 2017) as well as
multi-group covariance estimation (Flury 1984, 1986; Boik 2002; Pourahmadi et al. 2007; Hoff
2009; Franks and Hoff 2019), covariate information was not utilized in conducting dimension
reduction, or it views the data at the group level, which does not account for subject-level
heterogeneity in the brain networks. Gaussian graphical models have been applied to study brain
connectivity networks in fMRI data (e.g. Li and Solea 2018; Zhang et al. 2020), however, the focus
was on analyzing connectivity networks, without explicitly considering their relationship with
subject-level covariates.
In this paper, in line with the covariance regression literatures (see, e.g. Engle and Kroner 1995;

Fong et al. 2006; Varoquaux et al. 2010; Pourahmadi 2011; Hoff and Niu 2012; Fox and Dunson
2015; Zou et al. 2017; Zhao et al. 2021a,b, 2024), we will frame the problem of analyzing FC as
modeling of heteroscedasticity, i.e. estimating a covariance function�x = var[Y |x] across a range
of values for an explanatory x-variable. In contrast to the approach developed inZhao et al. (2021b)
where each projection vector for�i is estimated sequentially and in Franks (2022)where statistical
inference is conducted conditionally on the estimated dimension-reduced subspace, the proposed
framework allows coherent and simultaneous inferenceon allmodel parameterswithin theBayesian
paradigm.
One typical approach to associating brain FC with behavior is to take a massive univariate

test approach that relates each connectivity matrix element with subject-level covariates (e.g.
Woodward et al. 2011; Grillon et al. 2013). However, this “massive edgewise regression” lacks sta-
tistical power, as it (i) ignores dependencies among the connectivity elements; and (ii) involves
quadratically increasing number of regressions that exacerbate the problem of multiple testing. On
the other hand, multivariate methods such as principal component analysis (PCA) as considered
in Crainiceanu and Punjabi (2011) consider the data from all ROIs at once, reducing the dimen-
sionality of the original outcome to a smaller number of “networks” components, however, these
common components may be associated with small eigenvalues, or the corresponding eigenvalues
may not be associated with covariates.
Theoutcomedata of interest aremultivariate time-series resting-state fMRI (rs-fMRI)data inRp

measured simultaneously across thepROIs (or parcels) definedbasedon an anatomical parcellation
(Eickhoff et al. 2018) or “network nodes” (Smith et al. 2012) derived from a data-driven algorithm
such as independent component analysis (ICA) (Calhoun et al. 2009; Smith et al. 2013). As in
Seiler and Holmes (2017), we will apply the Bayesian CAP regression to data from the Human
ConnectomeProject (HCP) (Van Essen et al. 2013) to compare short sleepers (i.e.≤ 6 hours)with
conventional sleepers (i.e. 7 to 9 hours) with respect to their FC.
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2. M ETHOD
2.1. Covariance regression models

We consider n subjects, with subject-specific covariances for brain activity time series from p
ROIs {�i ∈ R

p×p, i = 1, . . . , n}. The space of valid covariance matrices �i ∈ R
p×p is the space of

symmetric positive definite (SPD) matrices, denoted as Sym+
p in this paper. The rs-fMRI time-

series for a given subject i are drawn from a Gaussian distribution: Y it ∼ N(μi,�i) with μi ∈ R
p

and�i ∈ Sym+
p . For centered data, the meanμi = 0, and the covariance�i captures FC. Without

loss of generality, we assume that the observed signal is mean-centered so that
∑Ti

t=1 Y it = 0 ∈ R
p

for each subject (i = 1, . . . , n), as our focus is on FC characterized by the covariance between the
brain signals. We observed Y it over Ti time points for each subject i (i = 1, . . . , n) along with
subject-level vectors of covariates xi ∈ R

q (i = 1, . . . , n).
In this paper, instead of directly modeling the subject-specific covariances �i = cov(Y it) (as

in Seiler and Holmes (2017); Fox and Dunson (2015); Zou et al. (2017)) in which most of the
covariance heterogeneity may be unrelated with xi, we aim to extract a lower dimensional compo-
nent whose covariance heterogeneity is related with xi. We will characterize this lower dimensional
structure by adimension reducingmatrix� ∈ R

p×d where��� = Id (i.e.� is in a Stiefelmanifold)
with d ≤ p. Specifically, we consider a latent factor model for Y it

Y it = ��
1
2
i sit + Liεit (2.1)

with latent factors sit ∼ N(0, Id) and εit ∼ N(0, Ip−d), of dimensions d and p − d, respectively,
where

�
1
2
i = exp

(
diag((Bxi + zi)/2)

)
(2.2)

models the x-related heteroscedasticity along the projection directions � ∈ R
p×d. In (2.2),

diag((Bxi + zi)/2) ∈ R
d×d is a diagonal matrix, where its diagonal elements are given by a

linear predictor vector (Bxi + zi)/2 ∈ R
d. In (2.1), � ∈ R

p×d specifies the Principal Directions
of Covariance (PDCs) of Y it related with xi, whereas the other orthogonal components Li ∈
R

p×(p−d), which satisfy Li ⊥ �, are included to account for the “noise” directions and magnitudes
of the heteroscedasticity that are unrelated with xi.
In (2.2), thematrixB = [β0, B̌] ∈ R

d×q (whereβ0 ∈ R
d represents the intercept) is a regression

coefficient matrix that relates xi ∈ R
q (with its first element being 1) to the subject-level outcome

covariance�i. Under model (2.1), the subject-level covariance is given by

�i = �� i�
� + LiL�

i , (2.3)

that decomposes the individual covariance matrices �i into two components, covariates related
and unrelated, a principal factor decomposition of �i. In (2.3), unlike the more general struc-
ture on LiL�

i whose variability is unrelated with xi, the PDCs � serve as features (i.e. “sub-
networks”) that we expect to be consistent across subjects. Along �, model (2.2) incorporates
subject-level random effects zi ∼ N(0,�) to capture additional heteroscedasticity not captured
by xi. In model (2.2), the diagonality of the d × d core tensor � i ∈ Sym+

d is needed as an
identifiability condition, since any non-diagonal SPD �̃ i can be diagonalized by its normalized
eigenvectors Ã ∈ R

d×d (assuming common eigenvectors Ã for �̃ i across subjects), and �Ã ∈
R

p×d can instead be used as the orthonormal dimension reduction matrix. While we impose the
diagonality of � i, we allow zi ∼ N(0,�), where � may have off-diagonal elements that allow
residual correlation in the the projected signals ��Y it ∈ R

d beyond what is modeled by common
covariates xi.
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Remark 2.1 The covariance model (2.1) and (2.2) should be distinguished from the
principal component (PC) regression that relates xi with the PCs ��Y it ∈ R

d, as our
interest is in studying the association between the covariate xi with the variance of the
components (i.e. heteroscedasticity), rather than with the components ��Y it ∈ R

d

themselves.

For amultivariate outcome signalY it ∈ R
p at time point t for subject i, Seiler and Holmes (2017)

utilized a heteroscedesticity model, cov(Y it) = Bxix�
i B� + σ 2Ip (t = 1, . . . ,Ti)(i = 1, . . . , n),

where the outcome covariance matrix �i = cov(Y it) is modeled by a quadratic function of Bxi ∈
R

p, where B ∈ R
p×q is the regression coefficient associated with xi ∈ R

q, and σ 2 > 0. However,
this model is quite restrictive, as its outer product termBxix�

i B� ∈ R
p×p is of rank 1, and the noise

covariance term σ 2Ip is diagonal with independent variances. On the other hand, model (2.3)
identifies a covariate associated rank-d (where d ≥ 1) structure via � and allows a less restrictive
noise covariance structure, whichmakes the covariance modeling with xi more flexible than that of
Seiler and Holmes (2017). In particular, the outcome dimension reduction via � implicit in model
(2.3) offers computational advantages throughworkingwith low dimensional (d-by-d) covariances
(rather than full p-by-p covariances), that can be particularly advantageous when the number of
within-subject time points (Ti) is relatively small compared to the signal dimension p. The general
outer product approach proposed by Hoff and Niu (2012) replaces σ 2Ip by a p × p SPD matrix,
requiring a large number of parameters (that can scale quadratically in p). The approaches proposed
in Fox and Dunson (2015); Zou et al. (2017) also similarlymodel thewhole p × pmatrix�i, which
may make the interpretation challenging for large matrices (Zhao et al. 2021b).
Zhao et al. (2021b) considered CAP regression, var(γ (k)�Y it) = exp(x�

i β(k)), where the
PDCs γ (k) ∈ R

p (k = 1, . . . , d) are sequentially estimated subject to identifiability constraints
γ (k)�	�γ (k) = 1 (in which 	� is a p × p covariance representative of the overall study population)
and γ (k) ⊥ γ (k′) (k �= k′). However, under a sequential optimization framework, joint inference
on the outcome projectionmatrix� = [γ (1), . . . , γ (d)] ∈ R

p×d and the regression coefficientB =
[β(1), . . . ,β(d)] ∈ R

q×d is not straightforward, and thus, Zhao et al. (2021a,b, 2024) conducted
bootstrap-based statistical inference only on the coefficientsB, andnot on�.On theother hand, the
proposedmodel (2.1), coupledwith the core tensormodel (2.2), further accounts for the additional
heteroscedasticity in the projected outcomes by using subject-level random effets zi to relax
the model assumption, while simultaneously modeling all the relevant parameters (�,B,� i,�),
allowing for more coherent downstream analysis that improves the model interpretability which
we will discuss in Section 4.

2.2. Tangent space parametrization of dimension-reduced covariance
Due to the constraint v��iv ≥ 0 for all nonzero v ∈ R

p, the space Sym+
p of covariance matrices

{�i} forms a curved manifold which does not conform to Euclidean geometry; for example, the
negative of a SPDmatrix and some linear combinations of SPDmatrices are not SPD(Schwartzman
2016). Thus, analyzing �i in the Euclidean vector space is not adequate to capture the curved
nature of PDCs, and leads to a biased estimation of PDCs (Zhao et al. 2021b). However, Sym+

p
is a Riemannian manifold under the affine-invariant Riemannian metric (AIRM) (Pennec et al.
2006), whose tangent space forms a vector space. We will use a Riemannian parametrization of
SPDmatrices in estimating thePDCs in this paper.A tangent space projection requires selectionof a
reference point that is close to�i (i = 1, . . . , n) to be projected. A sensible reference point on Sym+

p
is a mean of�i (i = 1, . . . , n), denoted as	� ∈ Sym+

p . Wewill use thematrix whitening transport of
Ng et al. (2016) to bring the covariances�i (i = 1, . . . , n) close to Ip, by applyingmatrix whitening

based on	�. The resulting whitened covariances	�− 1
2 �i	�− 1

2 would be close to the identity matrix
Ip, at which we can construct a common tangent space for projection.
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Remark 2.2 Here we briefly review some relevant concepts of Riemannian geometry. Let
A ∈ Sym+

p , and TA(Sym+
p ) be the tangent space at A. Given two tangent vectors

X1,X2 ∈ TA(Sym+
p ) at A, the AIRM inner product is 〈X1,X2〉A = tr(A−1X1A−1X2).

Given X ∈ TA(Sym+
p ), there is a unique geodesic denoted as γ (t) ∈ Sym+

p such that
γ (0) = A and γ ′(0) = X,

γ (t) = ExpA(tX) = A
1
2 exp(tA− 1

2 XA− 1
2 )A

1
2 (2.4)

that connects A to a point B = γ (1) ∈ Sym+
p when evaluated at t = 1. For

X ∈ TA(Sym+
p ), the Exponential map, defined as ExpA(X) := γ (1) ∈ Sym+

p , projects the
given X to a point B ∈ Sym+

p , in such a way that the A and X distance on the tangent plane
is the same as that between A and B on the manifold. The (AIRM) Log map, which is the
inverse mapping of ExpA(X), projects the point B ∈ Sym+

p back to the tangent vector,

X = LogA(B) = A
1
2 log(A− 1

2 BA− 1
2 )A

1
2 ∈ TA(Sym+

p ), (2.5)

and we can re-express the geodesic (2.4) as γ (t) = ExpA(t LogA(B)), t ∈ [0, 1]. The
corresponding geodesic distance between A and B is d(A,B) = 〈LogA(B), LogA(B)〉

1
2
A =

‖log(A− 1
2 BA− 1

2 )‖F , where ‖·‖F is the Frobenius norm.

In this paper, for each dimension reducing matrix� ∈ R
p×d, we will use 	� := ��	�� ∈ Sym+

d ,
where 	� is a fixed representative population level covariance, to “whiten” the individual level
dimension-reduced covariances� i = ���i� ∈ Sym+

d (i = 1, . . . , n) of model (2.3). Specifically,

we will normalize � i by 	�− 1
2 (where 	�− 1

2 is computed based on the eigendecomposition

of 	� = ��	��), so that the resulting individual “whitened” SPD �∗
i := 	�− 1

2 � i	�− 1
2 =

��	�− 1
2 �i	�− 1

2 � (i = 1, . . . , n) is close to the identity matrix Id. We will parametrize these �∗
i

(i = 1, . . . , n) in the tangent space at Id, by projecting�∗
i at Id using the Log map,

LogId
(�∗

i ) = log(�∗
i ) = log(	�− 1

2 � i	�− 1
2 ) (= φ	�(� i)), (2.6)

locally mapping the bipoint 	� ,� i ∈ Sym+
d × Sym+

d to an element in the tangent space at Id.

For notational convenience, in (2.6) let us denote the Log map, log(	�− 1
2 � i	�− 1

2 ) given 	� , as
φ	�(� i) ∈ R

d×d, which is no longer linked by the positive definiteness constraint (Pervaiz et al.
2020) and forms a vector space. Then, treating� i as a local perturbation of 	� in tangent space, we
model φ	�(� i) in (2.6) by a linear model of the form,

φ	�(� i) = diag(B̃xi + z̃i) (2.7)

where the linear predictor B̃xi + z̃i ∈ R
d lies in (unrestricted) Euclidean vector space. Upon

parametrizing φ	�(� i) (with appropriate priors on B̃ and z̃i ∼ N(0,�)), we will re-map these
covariate-parametrized objects φ	�(� i) in (2.7) to the original space in Sym+

d , by first taking
Exponential map, Exp(φ	�(� i)) = exp(φ	�(� i)) (i.e. taking (2.4) at t = 1 and A = Id) and then
translating it back to the base point ��	�� through “de-whitening” with 	� = ��	��, yielding

� i = exp(φ	�(� i))�
�	�� (2.8)

which completes our parameterization of the core tensor� i in (2.3). To define the mapping (2.6),
we select	� to represent an estimate of the Euclidean average of�i. Among examined estimators in
previous works (Dadi et al. 2019; Pervaiz et al. 2020) this choice of 	� showed stable performance
across various scenarios. We set 	� = 1

n
∑n

i=1 �̂i, where �̂i = 1
Ti

∑Ti
l=1 Y itY�

it .
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2.3. Posterior inference
2.3.1. Prior and likelihood specification

We perform posterior inference on the tangent space parameterized model (2.7), which will be
mapped to parametrization (2.2). LetD represent the observed data and� denote the collection
{� i}n

i=1, and let Y i = {Y i1, . . . ,Y iTi}. The posterior of parameters (�,� , B̃,�) can be expressed
as the the product of a prior and the likelihood,

p(�,� , B̃,�|D) ∝ p(�,� , B̃,�)

n∏
i=1

p
(

Y i|�,� , B̃,�
)
. (2.9)

The covariate relevant component likelihood for subject i under (2.1) is

p(Y i|�,� , B̃,�)

∝ |�� i�
� + LiL�

i |−Ti/2 exp(−1
2

Ti∑
t=1

Y�
it (��−1

i �� + Li(L�
i Li)

−1L�
i )Y it)

∝ |� i|−Ti/2 exp(−1
2

Ti∑
t=1

Y�
it ��−1

i ��Y it) |	i|−Ti/2 exp(−1
2

Ti∑
t=1

Y�
it Li	

−1
i L�

i Y it)

∝ |� i|−Ti/2 exp(−1
2

Ti∑
t=1

tr(Y�
it ��−1

i ��Y it))

∝ | exp(φ	�(� i))|−Ti/2 exp(−1
2

Ti∑
t=1

tr(Y it	�− 1
2 �

(
exp(φ	�(� i))

)−1
��	�− 1

2 Y�
it ))

(2.10)

where the last line follows from the tangent-space parametrization (2.8) of � i. Equation (2.10)
indicates that the likelihood is in the form of a Gaussian likelihood of transformed responses,

��	�− 1
2 Y it ∼ N(0, exp(φ	�(� i)) = N(0, exp(diag(B̃xi + z̃i)) (2.11)

and no attempt will be made to estimate the parameters Li in (2.1) unrelated with xi.
We specify the prior p(�,� , B̃,�) = p(�, B̃,�)p(�|�, B̃,�) in (2.9) as

∝ p(�)p(B̃)p(�) exp

{
−1
2

n∑
i=1

( �φ	�(� i) − B̃xi)
��−1( �φ	�(� i) − B̃xi) − n

2
log |�|

}
, (2.12)

using independent priors p(�, B̃,�) = p(�)p(B̃)p(�) and a conditional prior on � = {� i}n
i=1

given (�, B̃,�) based on φ	�(� i) = diag(B̃xi + z̃i). In (2.12), �φ	�(� i) ∈ R
d denotes the vector

of the diagonal elements of φ	�(� i) ∈ R
d×d. For B̃ ∈ R

d×q, we use a mean zero matrix Gaussian
prior with element-wise standard deviation σB̃jk

> 0. For � ∈ Sym+
d , which we decompose into

diag(ω)�̃diag(ω), we use an unit-scale half-Cauchy distribution (Gelman 2006; Polson and Scott
2012) on each element of the standard deviation vector ω ∈ R

d (allowing for the possibility of
extreme values) and a Lewandowski-Kurowicka-Joe (LKJ) prior (Lewandowski et al. 2009) on
the correlation matrix �̃ with hyperparameter η > 0 (specifying the amount of expected prior
correlations). For � ∈ R

p×d, we use a matrix angular central Gaussian (MACG) (Chikuse 1990;
Jupp andMardia 1999) with hyperparameter� ∈ Sym+

p . An orthonormal randommatrix� is said
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to be distributed as a MACG (with parameter�) if � d= U(U�U)−1/2, where U ∈ R
p×d follows

a p × d matrix normal distribution, whose density is

fU(U) = (2π)−pd/2|�|−d/2 exp(tr(−U��−1U/2)). (2.13)

If the row covariance � = Ip, then the prior on U encodes no spatial information. In our illus-
trations, we employed flat priors on � and the correlation matrix �̃ (with � = Ip and η = 1,
respectively), and weakly informative priors on B̃, using σ 2

B̃jk
= 2.52.

2.3.2. Posterior computation via polar expansion
A Markov chain Monte Carlo (MCMC) sampling for � from the posterior (2.9) is challenging
due to the restriction that � is in a Stiefel manifold. We will use polar expansion to transform the
orthonormal parameter� to anunconstrainedobject (U) towork around this restriction.Generally,
“parameter expansion” of a statistical model refers to methods which expand the parameter space
by introducing redundant working parameters for computational purposes (Jauch et al. 2021). By
polar decomposition (Higham 1986), any arbitrary matrixU ∈ R

p×d can be decomposed into two
components,

U = �U SU , (2.14)

where the first component �U := U(U�U)−1/2 ∈ R
p×d is an orthonormal (rotation) matrix, and

the second SU := (U�U)1/2 ∈ R
d×d is a symmetric nonnegative (stretch tensor) matrix.

Using a MACG prior on � with prior on U in (2.13) allows for posterior inference on U (rather
than directly on�). By employing the polar expansion of�U toU in (2.14), we “parameter expand”
an orthonormal �U to an unconstrained U. This expanded parameter maintains the same model
likelihood p(D|�U ,� , B̃,�) as in (2.10). However, the prior p(�U ,� , B̃,�) in (2.12) expands to
p(U,� , B̃,�)under parametrization (2.14), leading to the correspondingposterior expansion from
p(�U ,� , B̃,�|D) in (2.9) to p(U,� , B̃,�|D). Using MCMC, we first approximate samples from
the expanded posterior p(U,� , B̃,�|D), then conduct the polar decomposition (2.14) to obtain
the samples from the posterior of�U , which can be verified via a change of variable from U to�U .
Specifically, given a Markov chain {Us,�s, B̃s,�s} with a stationary distribution proportional to
p(U,� , B̃,�|D), we approximate the posterior of � by {�s} where �s = Us(U�

s Us)
−1/2 for each

s, yielding approximate samples from p(�,� , B̃,�|D).
In this paper, approximate the posterior distribution of parameters (U,� , B̃,�) using an adap-

tive Hamiltonian Monte Carlo (HMC) sampler (Neal 2011) with automatic differentiation and
adaptive tuning, implemented in Stan (2023). Consequently, we obtain HMC posterior samples
of (�,� ,B,�). The mapping between B and B̃ is given in Supplementary Materials S1. As in
any PCA-type analysis, there is a sign non-identifiability of �; the non-identifiability of matrix �

up to random sign changes for each component. That is, the component vector γ (k) and −γ (k)

correspond to the same direction. We can align the posterior samples {γ (k)
s }. For the first post-

warmup sample γ
(k)
1 , let j1 = argmaxj(|γ (k)

j,1 |). For s ≥ 2, we compared the sign of γ (k)
j1,s with that of

γ
(k)
j1,1, and if the signs disagreed, wemultiplied γ

(k)
s by−1. The aligned γ

(k)
s ’s were used to construct

the credible intervals of γ (k). In Sections 3 and 4, we employed a burn-in of 700 steps, during
which Stan optimizes tuning parameters for the HMC sampler. After burn-in, we ran HMC for
an additional 1300 steps to generate 1300 post-warmup samples. Convergence was assessed by
examining traceplots of random parameter subsets.
Unlike ICA, where the order of the extracted components is relatively arbitrary, the components

γ (k)�Y it (k = 1, . . . , d) in (2.1) specified by� = [γ (1), · · · , γ (d)] ∈ R
p×d can be ranked based on

the sample variance of the expected log-variance E[log �̌
(k)
i |D] they explain across observations

i = 1, . . . , n, where log �̌
(k)
i = x�

i β(k) (k = 1, . . . , d); here we exclude subject-level random

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxae023/7710029 by guest on 10 July 2024

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxae023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxae023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxae023#supplementary-data


8 · Park

effects z(k)
i ∈ R to quantify only covariate-associated heteroscedasticity. Specifically, we sort the

d estimated components in decreasing order of the magnitude of the sample variance V (k) =∑n
i=1

{
E[log �̌

(k)
i |D] − 1

n
∑n

i=1 E[log �̌
(k)
i |D]

}2
(k = 1, . . . , d) of the expected log-variance

E[log �̌
(k)
i |D] attributable to xi.

2.3.3. Determination of the number d of the components
We propose to use a selection criterion based on the Watanabe-Akaike Information Criterion
(WAIC) (Watanabe 2010) which can be used to estimate the expected log posterior. Given a
fixed d, we compute the log pointwise predictive density (LPPD) of the dimension reduced
model, penalized by the WAIC effective degrees of freedom, r̂waic (e.g. Gelman et al. (2014)).
Specifically, we select the dimensionality d of the covariate-assisted outcome projection, which
maximizes the expecteddeviancebetween twomodels in the projectedoutcome space: one incorpo-
rating covariate-explained heteroscedasticity ��Y it ∼ N(0, �̌ i = exp(diag(Bxi))), and the other
without heteroscedasticity ��Y it ∼ N(0, 	� = ��	��). The expected deviance (scaled by−2) is
estimated by

−2
n∑

i=1

Ti∑
t=1

1
S

S∑
s=1

logR(s) + 2r̂waic, (2.15)

where r̂waic = ∑n
i=1

∑Ti
t=1

1
S

∑S
s=1

(
logR(s) − 1

S
∑S

s=1 logR(s)
)2
, inwhichR(s) = p(�(s)�Y it |�̌(s)

i )

p(�(s)�Y it |	�(s)
)
,

i.e. the posterior ratio of the two models with vs. without covariate-explained heteroscedasticity,
computed using the MCMC posterior parameter samples (s = 1, . . . , S). If the covariates xi are
predictive of the covariances ��i� along all PDCs � ∈ R

p×d of rank d, then the corresponding
expected log posterior, E

[
log p(��Y it|�̌ i)

]
, will be large. However, for a too large rank d, the

covariates may not predict the covariances ��i� in all posited directions �, leading to a smaller

expected log posterior ratio, E
[
log p(��Y it |�̌ i)

p(��Y it |	�)

]
= E

[
log p(��Y it|�̌ i)

]
− E

[
log p(��Y it|	�)

]
,

compared to that with the optimal projected outcome dimension d. Considering the ratio is
crucial for making this criterion comparable across different d’s, and we select d that minimizes this
expected deviance. In Supplementary Materials S2, we demonstrate the validity of this criterion in
selecting the correct number of covariate-relevant heteroscedasticity components.

3. SI MUL ATION ILLUSTR ATION
3.1. Simulation setup

For each unit (subject) i, we simulate a set of outcome signals Y it ∈ R
p (t = 1, . . . ,Ti) (i =

1, . . . , n) from a Gaussian distribution with mean zero and p × p unit-specific covariance �i. We
vary n ∈ {100, 200, 300, 400}, Ti ∈ {10, 20, 30}, and p ∈ {10, 20}. We use model (2.3) to gener-
ate �i ∈ R

p×p, where the core SPD � i = exp(diag(Bxi + zi)) ∈ Sym+
d with d = 2, where xi =

(1, xi1, xi2, xi3, xi4)
� ∈ R

q, is defined based on the subject-level linear predictors Bxi + zi,

Bxi + zi =
(
0.1 0.4 −0.5 0.5 −0.5
0.1 −0.3 0.4 −0.4 0.4

) ⎛⎜⎜⎜⎝
1

xi1
xi2
xi3
xi4

⎞⎟⎟⎟⎠ + zi = β0 +
(

(xi1 xi2 xi3 xi4)β
(1)

(xi1 xi2 xi3 xi4)β
(2)

)
+ zi

of dimension d = 2, where β0 = (0.1, 0.1)� ∈ R
2 is the intercept vector, β(1) = (0.4,−0.5,

0.5,−0.5)� andβ(2) = (−0.3, 0.4,−0.4, 0.4)� are the regression coefficients for (xi1, xi2, xi3, xi4)
�
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∈ R
q−1. We generate covariates xi1

iid∼ Bernoulli(0.5) and xi2, xi3, xi4
iid∼ N(0, 12), and the subject-

specific random effects zi
iid∼ N(0,�), where� =

(
ω11 ω12
ω12 ω22

)
=

(
0.52 0.1
0.1 0.52

)
, to define� i.

For each simulation run, we use the von Mises–Fisher distribution to randomly generate an or-
thonormal basis matrix [�,L] ∈ R

p×p for Y it ∈ R
p, and its subcomponent L ∈ R

p×(p−d) is further
transformed by subject-specific orthonormal matrices Ai ∈ R

(p−d)×(p−d), each randomly gener-
ated from the von Mises–Fisher distribution. Then, the “noise” covariance components LiL�

i =
LAi exp

(
diag(εi)

)
A�

i L� ∈ R
p×p are specified by generating εi ∈ R

p−d with each element εij
iid∼

N(0, 0.52), whereas � exp
(
diag(Bxi + zi)

)
�� ∈ R

p×p specify the “signal” components. For each
simulation run, we compute the base covariance 	� that we use for tangent-space parametrization
of model (2.3) as the sample marginal covariance on the training sample.
To investigate the robustness of the method against model misspecification, we further consider

the case where there are no common eigenvectors � across subjects. We consider subject-level

random perturbation using the subject-level rotation matrices R(θi) =
(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
with

random angles θi
iid∼ Unif[−π/10,π/10] (i = 1, . . . , n), and use �R(θi) ∈ R

p×d (i = 1, . . . , n) in
place of � in generating the responses in (2.1), referred to as “model misspecification” cases.

3.2. Evaluation metric
We run the simulation 50 times. For each simulation run, we compute, as evaluation metrics, the
absolute cosine similarity 1− |〈γ̂ (k), γ (k)〉| for the loading coefficient vectors (where a value close
to 0 indicates the proximity) and the root mean squared error (RMSE) ‖β̂(k) − β(k)‖/√4 (k =
1, 2) for the regression coefficient vectors, as well as theRMSE for the elements of the randomeffect
covariance matrix�, ‖(ω̂11, ω̂12, ω̂22)

� − (ω11,ω12,ω22)
�‖/√3, where the notation ·̂ represents

the posterior mean of ·. While we conduct the model estimation using the tangent space parame-
terization (2.7) with B̃, the results are mapped to the original parametrization withB in (2.3). This
approximately amounts to shifting the intercept vector β0 := (β

(1)
0 ,β(2)

0 )� ∈ R
2 by the diagonal

elements of log(��	�−1
�) ∈ R

2×2 (see Supplementary Materials S1). We report the estimation
performance for β0 by reporting RMSE ‖β̂0 − β0‖/

√
2, under the original parametrization with

B. Additionally, to assess whether the constructed credible intervals provide reasonably correct
coverage for the true values of the parameters, we evaluate the posterior credible intervals of the
model parameters (γ (k),β(k),�)with respect to the frequentist’s coverage proportion. Specifically,
for each simulation run, we estimate the posterior distribution of the parameters and calculate
the 95% posterior credible intervals for the parameters, and then evaluate how often the credible
intervals contain the true parameter values. We used a random initialization of the Markov chains
in our posterior sampling.

3.3. Simulation results
In Fig. 1, as sample sizes (n,T) increase, the estimation performance tends to improve overall.
Particularly when the sample sizes are relatively small (e.g. n = 100,T = 10), the improvement
tends to depends on the magnitude of the covariate effects on the outcome projection component,
as performance for parameters for the first component (γ (1) and β(1)) tends to be slightly better
than those for the second components (γ (2) and β(2)), reflecting stronger covariate effects on
the first projection component. The number of subjects (n) and time points (T) both influence
performance; increasing T enhances estimation by providing more subject-level information for
accurate estimates of subject-specific random effects and their covariance �, and accordingly
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Figure 1.The model parameter estimation performance for p = 20 case, for the loading coefficient
vectors γ (k) (k = 1, 2), elements of the random effect covariance matrix�, regression coefficients β(k)

(k = 1, 2), and intercept β0, averaged across 50 simulation replications, with varying
n ∈ {100, 200, 300, 400} and T ∈ {10, 20, 30}.

population-level parameters γ (k) and β(k). The p = 10 cases reported in Supplementary Materials
S3 show qualitative similar results to those for the p = 20 cases.
In terms of coverage probability, the results in Table 1 for both p = 10 and 20 cases indicate

that the “actual” coverage probability is reasonably close to the “nominal” coverage probability of
0.95, particularly with larger sample sizes (e.g. n = 400, T = 30) for the regression coefficients
β(k). Overall, the results in Table 1 suggest that the Bayesian credible intervals exhibit reasonable
frequentist coverage, providing estimates of the parameter uncertainty that aligns with the desired
coverage level. In SupplementaryMaterials S4, we further examine the model’s performance under
misspecification: 1) when excluding the random effect component zi; and 2) when there are no
common “signal” eigenvectors across subjects. Without the random effect, estimation performance
remains comparable in terms of bias, but the coverage of 95% credible intervals tends to under-
estimate uncertainties, particularly for the regression coefficients β(k). The absence of common
covariate-related eigenvectors introduces bias in estimating β(k), leading to lower coverage levels
of the credible intervals than nominal. The average computation time (on aMacBook running M3
Max with 96 GB unified memory) was about 0.8 hours (SD= 0.16) for obtaining 1300 posterior
samples on n = 400 subjects with T = 30 time points and p = 20.

4. A PPLIC ATION
In this section, we applied the Bayesian CAP regression to data fromHCP. As in Seiler and Holmes
(2017), we used the rs-fMRI data from HCP 820 subjects and examined the associations between
rs-fMRI and sleep duration. Each subject underwent 4 complete 15-min sessions (with TR =
750 ms, corresponding to 1200 time points per session for each subject), and each 15-min run of
each subject’s rfMRI data was preprocessed according to Smith et al. (2013). We focused on the
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Table 1.The proportion of time that 95% posterior credible intervals contain the true values of the
projection loading vectors γ (k) (k = 1, 2), regression coefficients β(k) (k = 1, 2), and elements of�,
averaged across 50 simulation replications, with varying n ∈ {100, 200, 300, 400} and T ∈ {10, 20, 30}.a

p = 10 p = 20

n T γ (1) γ (2) β(1) β(2) � γ (1) γ (2) β(1) β(2) �

100 10 0.89 0.90 0.93 0.90 0.91 0.86 0.86 0.86 0.84 0.88
20 0.85 0.85 0.91 0.87 0.93 0.90 0.89 0.92 0.87 0.94
30 0.88 0.87 0.91 0.90 0.91 0.87 0.89 0.88 0.88 0.88

200 10 0.90 0.88 0.95 0.92 0.94 0.90 0.93 0.96 0.94 0.89
20 0.92 0.91 0.97 0.92 0.93 0.91 0.92 0.93 0.94 0.93
30 0.89 0.89 0.96 0.88 0.94 0.89 0.89 0.90 0.89 0.89

300 10 0.88 0.88 0.90 0.90 0.88 0.90 0.91 0.96 0.92 0.89
20 0.90 0.86 0.90 0.84 0.91 0.92 0.90 0.96 0.92 0.90
30 0.91 0.90 0.91 0.90 0.91 0.91 0.91 0.94 0.92 0.91

400 10 0.91 0.89 0.96 0.92 0.85 0.90 0.93 0.93 0.92 0.90
20 0.94 0.91 0.96 0.96 0.87 0.92 0.91 0.94 0.92 0.93
30 0.93 0.92 0.96 0.95 0.89 0.93 0.91 0.92 0.92 0.92

a Coverage was computed for each entry, then averaged within components (γ (k), β(k) and �) and across the simulation
replications (rounded to two significant digits).

first session which is about a typical duration for rs-fMRI studies. We also applied the proposed
method to the other three sessions to examine the sensitivity and reliability of this regression (see
Supplementary Materials S6, where the covariate-related FC exhibits a high level of consistency
across all 4 scanning sessions, with the intra-cluster correlation coefficient value of 0.84, 0.72, 0.84
and 0.83, for the 4 identified network components in terms of the log-variance).
We used a data-driven parcellation based on spatial ICA with p = 15 components (i.e. using

p = 15 data-driven “networks nodes;” see Fig. 2 for their most relevant axial slices in MNI152
space) from the HCP PTN (Parcellation + Timeseries + Netmats) dataset, where each subject’s
rs-fMRI timeseries data were mapped onto the set of ICA maps (Filippini et al. 2009). We refer
to Smith et al. (2013) for details about preprocessing and the ICA time series computation. We
conduct inference on the association between the FC over these IC network nodes (Smith et al.
2012) and sleep duration, gender and their interaction.
As in Seiler and Holmes (2017), we classified the subjects into two groups: a group of 489

conventional sleepers (average sleep duration between 7 and 9 hours each night) and a group of
241 short sleepers (average equal or less than 6 hours each night). This yielded a total of 730
participants to compare FC (over the IC networks in Fig. 2) between short and conventional
sleepers. Since the time series are temporally correlated, we inferred the equivalent sample size
of independent samples. We computed the effective sample size (ESS) defined by Kass et al.

(1998), ESS= min
i∈{1,...,n},j∈{1,...,p}

(
Ti

1+2
∑∞

s=1 cor(Y(j)
i1 ,Y(j)

i,1+s)

)
, where Y (j)

it is the data at time t of the

jth network node for subject i, following a conservative approach taking the minimum over all p
components and n subjects as the overall estimator. Based on the estimated ESS, we performed
thinning of the observed timeseries data, subsampling Ti = T = ESS= 34 time points for each
subject.The resultingoutcomedata,Y it (i = 1, . . . , n) (t = 1, . . . ,T), were thenmean-removedper
each subject (so that

∑T
i=1 Y it = 0 ∈ R

15 for each i), and we focused on the association between
their covariances�i and covariates.
Weused theWAICcriterion (2.15) to identifyd = 4projection components.Themodels’WAIC

values over the range of d = 1 to 6 were −227.9, −397.6, −520.4, −602.7, −573.4, and −358.4,
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Net1 Net2 Net3 Net4 Net5 Net6 Net7 Net8

Net9 Net10 Net11 Net12 Net13 Net14 Net15

Figure 2. Fifteen independent components (ICs) from spatial group-ICA constituting a data-driven
parcellation with 15 components (“network nodes”), provided by the HCP PTN dataset, represented at
the most relevant axial slices inMNI152 space. According to Seiler and Holmes (2017), these IC networks
correspond to default network (Net15), cerebellum (Net9), visual areas (Net1, Net3, Net4, and Net8),
cognition-language (Net2, Net5, Net10, and Net14), perception-somesthesis-pain (Net2, Net6, Net10,
and Net14), sensorimotor (Net7 and Net11), executive control (Net12) and auditory (Net12 and Net13).

where the minimizer was the d = 4 case. The parameters (�,B and�) with d = 4 are summarized
by their posterior means and 95% credible intervals, reported in Supplementary Materials S4.
The expected value of the log Deviation from Diagonality (DfD) was 0.60, suggesting a moderate
departure from the diagonality of� i assumed in (2.2), but the deviation is not overly pronounced.
Undermodel (2.1), for a linear contrast vector δ ∈ R

q, we candefine the log covariance “contrast”
map due to a δ-change in the covariates x ∈ R

q, which corresponds to �
(
diag(Bδ)

)
�� ∈ R

p×p

(see Supplementary Materials S7), where B ∈ R
d×q is the regression coefficient matrix in (2.2).

Specifically, the diagonal elements of this contrastmatrix�
(
diag(Bδ)

)
�� can be extracted and ex-

ponentiated. This represents the response signals’ variance ratio (VR) corresponding to a δ-change
in the covariates. For the four contrasts derived from the SleepDuration×Gender interaction, the
left two column panels in Fig. 3 present the response signals’ variance ratio, contrasting (i) short vs.
conventional sleeper among male; (ii) short vs. conventional sleeper among female; (iii) male vs.
female among short sleeper; and (iv) male vs. female among conventional sleeper.
In Fig. 3, the nodes, or “parcels,” whose VR values were identified (based on 95% credible

intervals) to be significantly different from 1, were all with VR > 1. The third column panels of
Fig. 3 indicate the nodes whose signals’ variances are expected to change in the same direction,
for the Short vs. Conventional sleeper contrasts in the top row panel, and for the Male vs. Female
contrasts in the bottom row panel.
For each δ contrast, we can infer the δ contrasts’ impact on the connectivity by 95% credible

intervals on the p(p + 1)/2 connectivity elements of the contrast matrix �
(
diag(Bδ)

)
��. The

first column panels in Fig. 4 display the covariance elements identified to be significant, whereas the
second columnpanels display the posteriormeanof thematrix elements of�

(
diag(Bδ)

)
��, where

each row panel corresponds to each δ contrast in the covariates. The results from the statistical
significance maps in Fig. 4 indicate that, overall, there are more substantial connectivity differences
between Short and Conventional sleepers (the first two row panels), compared to the cases when
we compare Male vs. Female (the last two row panels), and there were slightly more pronounced
Short vs. Conventional sleepers differences amongMales (the first row panel) than among Females
(the second row panel). While there were several identified connectivity differences betweenMale
vs. Female among Short sleepers, there were no statistically significant Male vs. Female differences
among Conventional sleepers.
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Figure 3.The response signals’ variance ratio (posterior means and 95% credible intervals),
corresponding to the four contrasts formed by the Gender-by-SleepDuration interaction. The 95%
credible intervals that do not include the variance ratio of 1 are highlighted in red. The sets (“parcel sets”)
of network nodes whose signals’ variances are expected to change in the same impact directions due to the
corresponding contrasts are indicated in the last column panels, for the Short vs. Conventional sleeper
contrasts in the top row, and for the Male vs. Female contrasts in the bottom row.

One conventional method for analyzing group ICA data involves initially computing subject-
level Pearson correlationsbetween the ICs,which are thenFisher z-transformed.This process is per-
formed on (p(p − 1)/2=) 105 pairs of correlations (calculated from 15 ICs), while we conduct the
element-wise log transformation on the p = 15 diagonal elements. A total of 120 element-wise lin-
ear regressions were then conducted on SleepDuration, Gender and their interaction, and P-values
were corrected for multiplicity using the Benjamini–Hochberg (BH) (Benjamini and Hochberg
1995) procedure to control the false discovery rate (FDR) at 0.05. The patterns of the connec-
tivity differences, implied by each δ-contrast, from this mass-univariate approach are presented
in Supplementary Material S10, which were similar to the results from Bayesian CAP in Fig. 4.
However, compared to the results from Bayesian CAP, far fewer statistically significant elements
(13 vs. 77, out of 480 elements) were identified.
While theCAP regression formulationofZhao et al. (2021b) also alleviates themultiplicity issue

and thus can improve statistical power, inference is limited to the association between covariates
and the projected outcome components, making it challenging to interpret covariates’ impacts in
measured ROIs directly. Therefore, the approach is not directly comparable with the proposed
approach here. In Supplementary Materials S8, we display the similarity (similarity between −1
and 1, with 0 indicating orthogonal) of the estimated projection directions from CAP (Zhao et al.
2021b) (in their first four leading components) and those from the proposed Bayesian latent factor
model, which shows positive association for each projection direction with the similarity at least
0.4. We also report the CAP regression coefficients (with 95% bootstrap confidence intervals) for
each estimated projected outcome component.
According to the meta analysis in Smith et al. (2009), the identified Parcel Set contrasting the

Short vs. Conventional sleeper in Fig. 3 mainly correspond to visual areas (network nodes N1, N3,
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Figure 4.The statistical significance map (the left column panels) and the posterior mean (the right
column panels) of the log covariance contrast �

(
diag(Bδ)

)
�� for each of the four covariate contrasts δ,

derived from the SleepDuration×Gender interaction.
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N4, N8), auditory areas (N12, N13) and sensory motor (N11). Curtis et al. (2016) found that self-
reported sleep duration primarily co-varied with FC in auditory, visual, and sensorimotor cortices.
Specifically, shorter sleep durations were associated with increased FC among auditory, visual, and
sensorimotor cortices (these regions roughly correspond to the network nodes N1, N3, N4, N8,
N12, N13, and N11), and decreased FC between these regions and the cerebellum (N9). These
positive and negative associations found in Curtis et al. (2016) are consistent with the results in the
contrast maps presented in Fig. 4 which contrast Short vs. Conventional sleepers.

5. DISCUSSION
Extending the frequentist approach developed in Zhao et al. (2021b) under a probabilistic model
(2.1), coupled with a geometric formulation of the dimension-reduced covariance objects � i in
(2.3), the proposed Bayesian method provides a framework to conduct inference on all relevant
parameters simultaneously, that produces more interpretable results regarding how the covariates’
effects are expressed in the ROIs. Furthermore, the outcome dimension reduction approach avoids
the need toworkwith subject-specific full p-by-p sample covariancematrices, which can suffer from
estimation instability when the number of time points (volumes) is not large (which is typically the
case for fMRI signals). Generally, the CAP formulation of Zhao et al. (2021b) allows for a more
targeted and efficient analysis by identifying the specific components of the outcome data relevant
to the association between covariates and FC.
Although the computational burden and complexity associated with working with the full p-by-

p sample covariance matrix can be significantly alleviated by reducing the dimensionality of the
outcome data, the method is generally not suitable to be run in very high-dimensional outcome
data, such as voxel-level data, and is better suited for intermediate spaces, such as those produced by
ICA or an anatomical parcellation. Overfitting might occur due to the large number of parameters
in the estimation of the outcome projection matrix �. Future work will apply prior distributions
on the dimension reducing matrix � as well as on the covariate effect parameters B that promote
sparsity, for improved estimation and interpretation in higher dimensional spaces.
As in Zhao et al. (2021a,b, 2024), the assumption that we make in conducting the inference

is partially common eigenvectors of the covariance structure (Wang et al. 2021), in which the
covariance is decomposed into shared and unique components, where the shared components cap-
tures the information related to the covariates. Future endeavors will explore strategies to mitigate
concerns related tomodelmisspecificationby addressingheterogeneity in these shared components
across subjects. We have conducted preliminary thinning of the observed multivariate time-series
to achieve an effective sample size, involving subsampling to eliminate temporal dependencies.
Subsequent investigations will refine this approach to delve into individual differences in dynamic
FC (e.g. Zhang et al. 2020; Bahrami et al. 2022), incorporating dimension reduction models that
account for both between-subject heterogeneity in spatial patterns and within-subject temporal
correlation through state-space modeling of latent factors. This will facilitate a deeper exploration
of associations between covariates and FC.
A main challenge in modeling covariance matrices is the positive definiteness constraint. Unlike

a mean vector where a link function can act element-wise, the positive-definiteness on a covariance
matrix is a constraint on all its entry (Pourahmadi 2011). One approach is to transform the
problem into an unconstrained estimation problem through a transformation such as Cholesky
decomposition, although this requires natural ordering information. Alternative way is to consider
a more fundamental geometric formulation, that views individual covariances as elements on a
(nonlinear) manifold. A more global transformation (compared to an entry-wise transformation)
such asmatrix log-transformation thenmaps individual covariances to a tangent space, allowing for
unconstrained operations. However, a global log-transformation poses interpretability challenges,
as it generally alters the covariate’s impact directions with respect to the measured ROIs. Our
geometry-based CAP approach focuses on identifying relevant eigenvectors, while simultaneously
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estimating eigenvalues-by-covariates associations through a linear model in a tangent space. By as-
suming and identifying relevant eigenvectors � that align with the covariates’ impact directions,
the global log transformation maintains their orientation regarding the covariates’ effects, thus
the estimated pairwise covariance contrasts preserve their interpretability as covariate-induced
pairwise connectivity differences.
Yet another important challenge is the highdimensionality, as the number of covariance elements

increase quadratically in the response variable’s dimension.Generally, CAP regression of Zhao et al.
(2021b), and its extension developed here, is useful if there is no need to model the generation
of the entire observations, and one is only interested in isolating the data into a potentially low-
dimensional representation inwhich they exhibit certain desired characteristics such asmaximizing
the model likelihood associated with xi. Such supervised dimension reductions can generally
mitigate the curse of dimensionality in covariance modeling.
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