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Summary
This tutorial introduces recent developments in precision medi-
cine for estimating treatment decision rules. The objective of
these developments is to advance personalised healthcare by
identifying an optimal treatment option for each individual patient
based on each patient’s characteristics. The methods detailed in
this tutorial define composite variables from the patientmeasures
that can be viewed as ‘biosignatures’ for differential treatment
response, which we have termed ‘generated effect modifiers’. In
contrast to most machine learning approaches to precision
medicine, these biosignatures are derived from linear and non-
linear regression models and thus have the advantage of easy
visualisation and ready interpretation. Themethods are illustrated
using examples from randomised clinical trials.
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Background

Personalised medicine refers to making treatment decisions based
on each individual patient’s characteristics. This is in contrast to
the ‘one treatment fits all’ approach that is predicated on an assump-
tion that one treatment is better than any other for every patient.
Precision medicine is a term, similar to personalised medicine,
related to prevention and treatment of disease that takes into
account each person’s genetics and other biological phenotypes,
environment and lifestyle. Traditional randomised clinical trials
(RCTs) compare two or more treatments with respect to the
average outcome in a target population and typically lead to a rec-
ommendation that all individuals in the target population be
assigned the treatment that was shown to be more efficacious on
average. The target populations are usually defined by some demo-
graphic characteristics, such as age groups or by clinical features,
such as chronicity or age at onset of the condition. In mental
health, there is a very high degree of heterogeneity even within
these targeted subpopulations in terms of treatment outcome. As
a result, the standard approach to treatment in psychiatry can be
an inefficient cycle of prescribing treatments via trial-and-error,
resulting in a patient’s prolonged suffering.

The goal of personalised medicine is to reduce this inefficiency
and improve patient care by tailoring treatment decisions based
on each individual patient’s characteristics. To refine treatment
decision-making, researchers have tried to characterise subgroups
of patients in RCTs who tended to respond well to one treatment
but not as well to other treatments in the study. Such characteristics
are termed treatment ‘effect modifiers’ or just ‘moderators’. Among
different approaches for finding effect modifiers, themost popular is
based on linear regression modelling, in which the outcome is
regressed on the treatment indicator, a specific patient characteristic
(such as severity of symptoms, age, duration of illness) and the
treatment-by-characteristic interaction. A significant interaction
term would suggest that the relative benefit of one treatment
versus the another depends on the value of that characteristic.

Such a characteristic is then considered an effect modifier because
an individual patient’s benefit from one treatment versus another
treatment depends on the patient’s characteristic score. Effect modi-
fiers inform the treatment decision for each specific patient, thus
personalising the decision.

Challenges in psychiatry

The search for effect modifiers has a long history in mental health
research, yet currently there is no reliable way of matching each
patient to his/her optimal treatment for depression or other psychi-
atric conditions. One reason is that most baseline measures typically
have small moderating effects and, individually, they contribute
little to inform optimal treatment decisions. Given p baseline char-
acteristics, the popular regression approach to personalised medi-
cine involving all p predictor-by-treatment interactions becomes
unwieldy, unstable and difficult to interpret when p is moderate
to large.

Another reason for the lack of progress in personalised medi-
cine in psychiatry is that the information clinicians conventionally
use, assessed through medical history, psychological and clinical
examination, is either not relevant or not precise enough. In the
past few decades, the understanding of biological mechanisms
underlying mental disorders has grown and these advances may
lead to more finely tuned and better performing patient-tailored
treatment decisions. Precision psychiatry capitalises on progress
in technology that allows characterising patient’s behaviour, envir-
onment, genetics and brain biology in detail unattainable even a few
years ago. These new sources of complex and high-dimensional data
are a promising new direction for advancing mental health research
and practice. In the era of precision psychiatry, identifying treat-
ment effect modifiers among the massive amount of patient infor-
mation requires more complex analytic methodologies than those
used in traditional research.
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Use of a regression-based approach

In this paper we present a parsimonious alternative to the conven-
tional linear regression models for finding effect modifiers. The
approach we describe here can provide interpretable results in
terms of a specially constructed composite predictor, which we
term a generated effect modifier (GEM). In efficacy studies, after
the primary analysis of treatment efficacy has been performed, the
usual practice is to seek individual effect modifiers (single patient
baseline characteristics) with the ultimate goal of informing treat-
ment decisions, for example Brotman et al1 and Markowitz et al.2

When no single variable has a strong modifying effect, the GEM
approach provides an appealing alternative.

Some recent advances in precision medicine are based on
machine learning algorithms, including support vector machines
for example Zhao et al3 and Song et al4 and tree-based methods
for example Laber & Zhao.5 In this tutorial, we focus instead on
regression-based approaches, which can provide treatment decision
rules (TDRs) that are both effective and readily interpretable.

We present the framework used in deriving optimal TDRs and
define optimality criteria. We consider the most common case of
modelling the outcome using a classical linear model and we
show how to combine multiple predictors into a single GEM. The
linear GEM approach is then generalised to accommodate non-
linear relationships between an outcome and an effect modifier.
These precision psychiatry methods are then illustrated using
examples from mental health research.

Method

Notation and introductory example

We begin with an example, which motivates the methodology
presented in this tutorial, while introducing the notation and
terminology used in the area of optimal treatment decisions.
Brotman et al1 performed an RCT to evaluate the effects of an
early childhood intervention called ParentCorps in comparison
with pre-kindergarten (pre-K) education as usual on learning,
behaviour and health outcomes. The trial involves randomisation
of elementary schools in socioeconomically disadvantaged neigh-
bourhoods, in which a majority of students were born to families
who recently immigrated to the USA. All 12 schools had pre-K pro-
grammes and were randomised either to ParentCorps or to pre-K
education as usual. ParentCorps is a preventive intervention that
aims to increase parental involvement in early learning, and to
promote positive behaviour support and effective behaviour
management in the home and classroom through parallel behav-
ioural strategies for parents and teachers. The goal of the interven-
tion is to mitigate the negative influence of poverty on children’s
development, thus resulting in long-term benefits on academic
achievement, mental and physical health.

The purpose of this study was to identify and characterise the
students for whom ParentCorps is most effective with respect to
academic achievement using a set of baseline characteristics (or cov-
ariates). Using conventional regression notation, we will denote the
baseline characteristics by x’s and the outcome by y. In this example,
we take the outcome to be y = end-of-kindergarten reading achieve-
ment as assessed by testers (masked to intervention status), using a
nationally normed (mean 100, s.d. = 15) psychometrically sound
measure of academic achievement. This example has six baseline
characteristics: x1 = conduct problems, x2 = defiance, x3 = emotion
understanding, x4 = school readiness, x5 = pre-academic skills
and x6 = academic problems. In general, it will be convenient to
denote the of set baseline characteristics by a single vector x, with
p elements, where p is the number of baseline characteristics.

Note, that vectors are denoted with bold symbols to distinguish
them from individual variables or other elements of a vector. In
the ParentCorps example x = (x1, x2, …, xp)′, p = 6. We will use
the variable A to denote the treatment options, usually coded as
A = 0 and A = 1 in the case of two treatments. In the ParentCorps
example, we have A = 1 for ParentCorps and A = 0 for the control.
Given a vector x of baseline characteristics, a TDR is simply a func-
tion of the baseline characteristics d(x) that assigns a specific treat-
mentA = 0 orA = 1 to patients with those characteristics. The goal is
to determine a treatment decision function d that will recommend
one of these treatments for any patient. Thus, if d(x) = 1 for a
patient with characteristics x, s/he is expected to benefit more
from Treatment A = 1 than if Treatment A = 0 had been assigned
instead. We wish to determine the function d that will have some
optimality properties.

Optimal TDRs

To compare different TDRs, we need to be able to measure them
using some quantitative evaluation metric. One useful measure
for a decision rule d is the ‘value’, which we denote by V(d). The
value of a decision rule is defined as the average of the outcome y
that would result if all patients in the entire target population
were to be treated according to the decision function d. Here we
consider outcome variables y that are continuous, and assume, for
the sake of discussion, that higher values of y are preferred. The
‘optimal treatment decision’ is the one that, when applied to the
target population, has the largest value.

From a statistical learning point of view, the goal is to determine
a treatment decision function d that maximises the value. The value
of a treatment decision function can be estimated from observed
data. A common method of estimating the value of a TDR is the
inverse probability weighted estimator (IPWE), see, for example
Robins et al6 and Zhang et al.7 The IPWE of the value of a TDR
is simply a (weighted) average of outcomes y of the patients
whose assigned treatment coincides with the treatment recom-
mended by the TDR. The weights are defined by the inverse of
the probability of being assigned to that treatment, i.e. the patients’
propensity for receiving a given treatment. When treatments are
randomly assigned in a study, these propensities are fixed by
design, for example for a two-arm RCT with 1:1 randomisation
for treatment assignments, the probability that any participant
receives any treatment is ½ in this case, the value of a TDR is esti-
mated by the (unweighted) average of the outcomes of patients
whose assigned treatment coincides with the treatment recom-
mended by the TDR.

When two treatments are available, one trivial TDR is simply
d(x) = 0, i.e., assign all patients to receive treatment A = 0, regardless
of their covariates x. Alternatively, the rule d(x) = 1 would dictate
that all patients receive treatment A = 1 regardless of x. Such rules
would result from a ‘one size fits all’ treatment strategy. The goal
of traditional RCTs is to evaluate the values of these two simple
TDRs, to compare them and to recommend the use of the one
that has higher value. Our goal is to improve upon the performance
of both of these two trivial rules by constructing a TDR that intelli-
gently incorporates patient information x in making treatment
decisions.

Effect modifiers in a linear regression model

Perhaps the most straightforward approach to incorporating patient
features into a TDR is through linear regression. If there is just one
numerical characteristic (or predictor) x1 to be investigated as a
potential modifier of the treatment effect in a study with two
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treatments, we might posit the linear regression model

y ¼ β0 þ β1x1 þ β2Aþ β3A
�x1 þ ε: ðmodel 1Þ

In this model, we note that β1 represents the effect of x1 that is
common for both treatment groups, and β2 represents the treatment
(A) effect when x1 = 0, sometimes referred to as a main effect of A.
A part of model (1) that is useful for patient-specific treatment selec-
tions is the interaction term β3A*x1. A non-zero interaction term
coefficient β3 would indicate that x1 is a treatment effect modifier,
in which case x1 should be used in any TDR. For a patient with a
given level x1 of the covariate, the expected outcome under treat-
ment A = 0 is β0 + β1x1, while that under treatment A = 1 is β0 +
β1x1 + β2 + β3x1, and therefore the difference between these out-
comes is β2 + β3x1. The optimal treatment decision based on
model (1) is simple: provided that higher scores on the outcome
are preferred, if β2 + β3x1 > 0, treatment A = 1 will be better for
the patient, and if β2 + β3x1 < 0, then treatment A = 0 will be
better (if lower scores on the outcome are better, the opposite treat-
ment decision is optimal). As the outcome under the two treatments
is the same when β2 + β3x1 = 0, in this case the decision might be
based on other considerations, for example, prescribe the treatment
with fewer side-effects or that is easier to comply with.

GEMs

With multiple characteristics, x1, x2, …, xp, TDRs can be estimated
using more complex multiple regression models that include
all such variables and also their interactions with the treatment
indicator. Such models, however, quickly become unstable and
less interpretable as the number of predictors increases. An appeal-
ing and parsimonious regression approach to constructing TDRs
is to form a composite variable, which we define to be a linear com-
bination of the predictors. Given a vector of p predictors x= (x1,…, xp)′,
we consider linear combinations of the predictors z = α′x = α1x1
+ · · · + αpxp, where α is a p-dimensional vector α = (α1, …, αp)′.
We call the composite variable z a GEM.

Modelling the outcome in terms of a GEM for each treatment
group provides a parsimonious approach to constructing a TDR
and the GEM can be thought of as a biosignature for treatment
response. The GEM can then be used in the simple linear regression
model (1) to determine an easily interpreted TDR. This can be
accomplished using a simple linear regression by replacing x1 in
(1) by the GEM z and determining the subsequent decision rule
based on z.

Note, that in many psychiatric and psychological studies, treat-
ment differences may go undetected by standard clinical trials ana-
lytic tools, because of high variability in the outcome that is
unrelated to treatment differences. Differences between treatment
effects may only become evident when treatment effect modifiers
are introduced that separate the outcome variability related to dif-
ferences in treatment effects from the variance unrelated to these
effects. It is quite possible that the two treatments might be
equally effective on average, but each one might be preferred for
a different subset of patients. From clinical trials data, identifying
subgroups of patients with differential treatment response classes
(for example responder and non-responder classes) can often be
achieved through a latent class or latent growth analysis,8–11 by
identifying biomarkers related to these response classes from
patients’ baseline predictors, or based on clustering.12 In contrast,
the GEM utilises an underlying outcome model of form (1), with
the focus of estimating a composite treatment effect modifier z
from baseline predictors. Using methods for tailoring/personalised
medicine requires modelling individual treatment differences
targeting subgroups with heterogeneous treatment effect. The

model of form (1) allows computing individual treatment differ-
ences and constructing individual treatment rules, as functions of
a biomarker signature z, efficiently utilising information on patient’s
characteristics. The GEM is an interpretable approach to discover-
ing treatment effects heterogeneity, and thus, helps to identify and
characterise subgroups of patients that will benefit from one but
not the other of the treatment options and vice versa.

The challenge in constructing a GEM is to find the coefficient
vector α that can lead to a good TDR. A natural choice for GEM
coefficients α, in terms of moderator analysis, is to maximise the
statistical significance of the interaction effects (assessed via an
F-test) since differential treatment effects are quantified by in-
teractions. The GEM coefficients α can be obtained by maximising
an F-ratio statistic (i.e. minimising its corresponding P-value)
whose numerator and denominator can be expressed in terms of
matrices of covariance characterising the between- and within-
group variations in the relationships between the p predictors and
the outcomes for the two treatment groups. The vector of GEM
coefficients α is then given by the leading eigenvector based on
a product involving the numerator and denominator matrices
(technical details are given in Petkova et al13).

As the GEM seeks the linear combination that minimises the
P-value for the interaction term (i.e. maximising the associated
F-ratio statistic), this will inflate type I (i.e. false positive) error
rates; a remedy for this error inflation is to use a permutation
approach to adjust the interaction P-value in the GEM model.
The software for fitting a GEM model in R14 is available in the
package pirate.15 The permutation algorithm for computing the
interaction P-value is also implemented in this package.

Effect modifiers in non-linear models

Although linear models are extensively used because of their simpli-
city of fitting and interpretation, frequently, there is no reason to
believe that the outcome will depend linearly on any such GEM.
By considering non-linear relationships, the additional flexibility
in the resulting TDRs may improve their performance. The linear
GEM approach (see the GEMs subsection above) can be extended
to accommodate non-linear associations.

Non-parametric regression, for example Green & Silverman,16

is a flexible approach useful when parametric regression models
(for example linear or quadratic) do not adequately explain the rela-
tionship between the outcome y and the predictors x. An attractive
semi-parametric approach to modelling non-linear relationships is
the single-index model,17,18 in which the outcome y is modelled as a
non-linear link function g( · ) of a parametric (linear) combination
of predictors z = α′x = α1x1 + · · · + αpxp via y = g(α′x) + ε, where
the shape of the function g( · ) and the coefficients α are determined
by the data. We proposed in Park et al19 a parsimonious single-
index model approach as a non-linear generalisation of the linear
GEM approach (outlined in the GEMs subsection above). The
model in Park et al19 is called a single-index model with multiple-
links (SIMML), modelling the outcome for each treatment using a
common GEM z = α′x (the single index) via a non-parametric
link function for each treatment (the multiple links). For two treat-
ments, the model would look like this:

y ¼ μ(x)þ g0(α0x)þ ε0; Treatment A ¼ 0;
g1(α0x)þ ε1; Treatment A ¼ 1;

�

where μ(x) represents a main effect of x, common for both treat-
ments. Interaction effects between the treatment variable A and
the GEM z = α′x are determined by the distinct shapes of the
non-linear link functions g0(z) and g1(z). The corresponding TDR
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is to assign treatment 1 if g1(z) > g0(z) and assign treatment 0 other-
wise (see Fig. 2 in the Results section for illustration).

The GEM coefficients of linear combination α are estimated
iteratively, repeating two steps:

(a) for a given vector of coefficients α, non-parametric regression
techniques (for example, B-splines),20 are used to estimate
g0(·) and g1(·) (and any working model, for example, a linear
model, can be assumed for the function μ(·)); and

(b) for given treatment-specific link functions g0(·) and g1(·), the
coefficients α are estimated via a weighted least-squares
method based on a linear approximation of the treatment-
specific link functions.

The iteration between these two steps continue until convergence.
The SIMML can be fit using R14 code available in the package
simml.21

Results

We now illustrate the application of these GEM approaches using
the ParentCorps intervention described above and a study of
treatments for people with major depressive disorder.

ParentCorps intervention example

In Brotman et al,1 the authors show that based on standard efficacy
analyses, with respect to reading achievement, the intervention is
effective on average, over and above gains achieved from attending
a pre-K education-as-usual programme. Within an at-risk popula-
tion (children living in socioeconomically disadvantaged neighbour-
hoods), children who enter pre-K without being ‘school ready’ are at
further risk for academic underachievement. Children with high
levels of behavioural dysregulation (for example with conduct pro-
blems or children that are defiant), low levels of social-emotional
skills (for example low emotion understanding and an unengaged
approach to learning) and limited pre-academic skills (for example
letter recognition, basic math concepts) are at an additional risk for
underachievement. According to the theory of change, the interven-
tion might be most beneficial for children with any or a combination
of these characteristics.

In this study, there were complete data for all child predictors
and the reading achievement outcome for 753 students, 370 from
schools randomised to ParentCorps and 383 from control schools.
We standardise the predictors to have mean zero and unit variance
(see Table 1 for the mean and the standard deviation of each pre-
dictor before standardisation). Although this standardisation is
not a requirement for this modelling approach, standardising
allows ready interpretation of the relative importance of each indi-
vidual predictor in describing the differential treatment responses.

First, we fit individual models (1) separately for each of the p = 6
risk factors including treatment assignment (ParentCorps (A = 1)

versus control (A = 0)) and interaction. Table 1 gives the P-values
of the F-test for significance of the interaction terms for these poten-
tial modifiers of ParentCorps treatment effect. None of the interaction
terms were significant at the 0.05 level. Second, we fit a full unre-
stricted linear regression model with all predictors and their interac-
tions with treatment (y ¼ β0 þ β01x þ β2Aþ β03x � Aþ e) and a
reduced model without the interactions (y ¼ β0 þ β01x þ β2Aþ e).
An F-test for significance of the full set of interactions indicated
that there was not a significant interaction effect (F(6,739) = 1.26,
P = 0.274). The regression coefficients associated with x from the
full model for the two treatment groups, i.e., β1 for A = 0 and β1 + β3
for A = 1, are given in columns 4 and 5 in Table 1, respectively.
Technically, these are the same coefficients that would be obtained
if we regressed the outcome on all six predictors using separate
regression models for each treatment group.

Next, the coefficients of the linear combination α for the GEM
criteria were estimated (last column of Table 1). Based on the per-
mutation testing approach to control type I error rates (described
in the GEMs subsection above), the resulting GEM has a statistically
significant interaction with the treatment indicator (P = 0.003). The
relative importance of each predictor in terms of characterising the
heterogeneous treatment responses can be judged by the relative
magnitude of the GEM coefficients (see Table 1). We note that
the GEM highlights the importance of defiance and pre-school aca-
demic skills.

The relationship between the GEM and the outcome for the two
intervention conditions is shown in Fig. 1. The cut-off point on the
linear combination of predictors (i.e. the GEM) above which a child
would benefit from the experimental intervention is−1.26. It is clear
from the figure that TDR based on this GEM variable z = α′x
excludes from treatment only a small proportion of children (to
the left of the vertical line at −1.26). This analysis and the resulting
figure can also be used to determine the cut-off point(s) on the GEM
where the differences between the two treatments are considered
statistically significant – for this, the point where the confidence
bands for the two regression lines stop overlapping could be consid-
ered as an approximation; here this point is around GEM= –0.5. Of
course, statistical significance depends heavily on the sample size
and might not correspond to clinical significance. We use clinical
significance below, when we illustrate the use of the GEM method-
ology for making practical decisions.

The value of the TDR based on the GEM, estimated using the
IPWE, is 111.9 (95% CI 109.7–112.8). For comparison, the esti-
mated value of the policy of providing everyone with the
ParentCorps intervention, obtained by averaging the outcomes of
students randomised to the intervention schools is 111.2 (95% CI
110.0–112.4), whereas the value of the decision to give no one the
intervention is 108.4 (95% CI 107.1–109.7). The confidence inter-
vals suggest that there is no difference in value using either the
GEM-based decision rule or the rule that assigns ParentCorps to
all pre-K students. The GEM-based TDR could not be expected to

Table 1 Potential correlates of the efficacy of the ParentCorps intervention with respect to academic achievement

Meana s.d.a
Regression coefficientc

Interaction,b P A = 0 A = 1 Estimatedd α

Conduct problems 0.40 0.66 0.497 0.68 −0.33 −0.13
Defiance 0.25 0.42 0.115 −2.40 2.12 0.82
Emotion understanding 1.17 0.46 0.936 0.50 0.93 0.34
School readiness 0.32 0.45 0.693 −0.45 −0.22 −0.07
Pre-academic skills 99.4 12.9 0.660 5.17 −1.66 −0.70
Academic problems 0.46 0.77 0.512 −3.06 0.05 0.10

a. The means and standard deviations of the variables (prior to standardisation).
b. P-values for the interaction covariate-by-treatment term from model (1).
c. Regression coefficients from models with all six variables as predictors for treatment A = 1 (ParentCorps) and A = 0 (control).
d. The estimated coefficients of the GEM for the standardised variables (mean 0 and standard deviation 1).
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result in a value higher than the policy of providing the ParentCorps
programme to everyone, as no student could be reasonably expected
to do worse with ParentCorps compared with standard pre-K. The
results from this analysis, however, allow the identification of chil-
dren who would benefit most from the programme. Specifically,
children whose GEM value is greater than –1.26 (indicated by the
dashed grey vertical line in Fig. 1) can be expected to have a
better outcome under ParentCorps compared with the usual pre-

K programme and the degree of this benefit as a result of the inter-
vention becomes quite substantial for larger values of GEM. For
example, children whose GEM score exceeds 1.8 (the dotted grey
vertical line of Fig. 1) are predicted to have more than a 15-point
(or 1 s.d.) improvement in academic achievement because of the
intervention. Thus, the GEM can be used to determine a threshold
(for example, a 1 s.d. improvement) to guide schools’ administra-
tions in spending resources for motivating parents to participate
in the ParentCorps meetings, lectures and other activities, as
parents’ participation is essential for the success of this intervention.

The data and the R14 code for this example are provided in sup-
plementary Files 1 and 2 available at https://doi.org/10.1192/bjo.
2019.85.

Depression study example

The previous subsection illustrated an application of the linear GEM
to develop a TDR. This subsection illustrates the advantage of the
SIMML in allowing non-linear flexibility in developing a TDR.
We illustrate the GEM methodology using data from an 8-week
RCT for the treatment of depression comparing a selective sero-
tonin reuptake inhibitor (SSRI) antidepressant drug (A = 1) to a
placebo (A = 0). The goal of the study is to identify baseline charac-
teristics that are associated with differential response to the anti-
depressant versus placebo. The investigators defined ‘biosignature’
as a combination of patient measures that constitutes a moderator
of the treatment effect. In this example, n = 88 participants were
randomised to placebo and n = 78 were randomised to an SSRI
drug. The outcome measure was defined as the change score from
baseline to week 8 (y = week 0 – week 8) on the Hamilton Rating
Scale for Depression (HRSD). High values of HRSD indicate
higher depression severity and thus positive change score indicates
a reduction in depression severity. Baseline clinical characteristics
include: x1 = age; x2 = severity of depressive symptoms measured
by the HRSD at baseline; x3 = logarithm of duration (in month)
of the current major depressive episode; and x4 = age at onset of
first major depressive episode. In addition to these standard clinical
assessments, patients underwent neuropsychiatric testing at base-
line to assess psychomotor slowing, working memory, reaction
time (RT) and cognitive control (for example post-error recovery),
as these behavioural characteristics are believed to correspond to
biological phenotypes related to response to antidepressants.22

These neuropsychiatric measures include: x5 = (A not B) RT-
negative; x6 = (A not B) RT-non-negative; x7 =(A not B) RT-all;
x8 = (A not B) RT-total correct;23 x9 = median choice RT CRT;24

x10 = word fluency WF;25 x11 = flanker accuracy; x12 = flanker RT;
x13 = post conflict adjustment.26 All baseline covariates are
standardised to have mean 0 and unit variance.

For this example, we employ the non-linear variant of the GEM
methodology by applying the SIMML model from the Effect
modifiers in non-linear model subsection above. Based on bootstrap
confidence intervals for the coefficients of the linear combination α,
only 4 of the original 13 covariates were retained to form the GEM,
in which the associated 95% bootstrap confidence intervals obtained
from 200 bootstrap replications do not include 0’s: age, symptom
severity, log(duration of major depressive episode) and flanker
RT. The results of fitting the non-linear GEM are illustrated in
Fig. 2.

The value of the TDR based on SIMML is 8.89 (95% CI
5.88–11.75). The value of the TDR based on the linear GEM is
8.02 (95% CI 4.72–10.92), suggesting that the non-linear flexibility
of the SIMML approach can lead to TDRs that provide better indi-
vidual outcomes on average. For comparison, the standard TDR to
treat everyone with the drug has a value of 7.35 (95% CI 4.11–10.22)
and the TDR to treat everyone with placebo has a value of 6.22 (95%
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vertical line indicates the cut-off point on the single index, above which a patient
benefits from the drug.
GEM, generated effect modifier.
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CI 3.13–9.15), see Fig. 3. Here, the wide 95% confidence intervals,
resulting from the small sample sizes in this example, indicate
that all pairwise differences between the values of the TDRs are
non-significant. Still, the difference between the values of the two
trivial TDRs (to treat everyone with drug versus to treat everyone
with placebo, difference of 1.13) is smaller in magnitude than the
difference between the value of the SIMML-based TDR and the
decision to treat everyone with the drug (difference of 1.54). This
means that patient-tailored antidepressant assignment, compared
with the standard TDR of assigning antidepressants to everyone,
can result in a benefit of magnitude similar to the average benefit
of the antidepressant compared with placebo. This observation
highlights the potential of making treatment decisions based on
individual patient characteristics for improving public health.

The data and the R14 code for this example are provided in sup-
plementary Files 3 and 4.

Discussion

This tutorial has summarised an approach to precision medicine for
the development of optimal TDRs based on individual patient’s
characteristics. The method for estimating TDRs described here is
one of many recently proposed in the literature. Research on preci-
sion medicine has flourished with methods on using clinical and
biological markers to guide the development of patient-tailored
treatment decisions, see Zhao et al,3 Song et al,4 Zhang et al,7 Cai
et al,27 Qian & Murphy,28 Wang et al29 and Benkeser et al.30

among many others. Misspecification of the models for the
outcome under different treatments, which can lead to suboptimal
TDRs, is among the major concerns stimulating the new develop-
ments. This has led to the proliferation of machine learning
approaches. However, machine learning approaches typically
require data-sets with very large numbers of patients (in the thou-
sands), which are not common in mental health research. The flexi-
bility offered by the non-linear GEM based on the SIMML provides
some protection with regard to model misspecification.

Recommendations

Still, the performance of the TDRs depends on the unknown true rela-
tionship between the observed patient characteristics and the outcome
under different treatments and in particular, the covariates that con-
tribute to the differential response to treatment. Our recommendation
is to employ more than one method and to compare the TDRs with

respect to their estimated values. Of course, any TDR must be subse-
quently validated in properly designed studies. An appropriate design
of a validation studywould be a three-armRCT, where the experimen-
tal treatment, the control treatment and treatment assignment accord-
ing to the investigated TDR are compared.

A frequently asked question is one about sample size necessary
to develop good TDRs. At this time, there are no established rules
for computing required sample sizes. As noted above, machine
learning methods typically require sample sizes in the thousands.
Parametric methodologies, such as those discussed in this tutorial,
are more efficient and thus, can provide reliable results with
smaller samples. Still, it is well known that the sample sizes neces-
sary to detect an overall treatment effect with traditional linear
models are, usually, sufficient to detect only large interactions
between the treatment and a baseline covariate, while individual
covariates typically have only small effects as treatment effect modi-
fiers, especially in mental health research. In addition, adjustment
for multiple testing when more than a single covariate is investi-
gated, would reduce the efficiency of any procedure that relies on
individual tests for the baseline covariates. This point of view high-
lights the advantages of the proposed GEM methodology.

Confirmatory versus discovery research

However, we want to make the following important distinction
between the traditional efficacy analysis of clinical trials and ana-
lyses for developing TDRs. In the traditional efficacy analysis, one
compares the two treatments and then proceeds to investigate
whether any baseline characteristics is a treatment effect modifier.
Such investigations are formulated and planned in the classic
hypotheses testing framework, with strict rules about qualifying
the findings as significant or not, and with corresponding interpret-
ation of the results. In contrast, the search for optimal TDRs is, in
essence, a process of discovery, which means that formal hypotheses
testing is used only at the validation stage, for example when a TDR
is compared in a three-arm study against the two competing treat-
ments (such as experimental and a control), as mentioned above. In
the TDR development stage, the goal is to obtain a decision function
that performs better than assigning everyone to one or other of the
two competing treatments. In the discovery process, one might
employ the hypotheses testing framework, as we did in the
ParentCorps intervention example results section above via the per-
mutation test for the GEM or in the depression example above,
where we selected 4 of the 13 possible covariates based on bootstrap
confidence intervals. Cross-validation with external data-sets or
splitting the available data-set, when adequate external data are
not available, is a much more appropriate analytic technique for
developing TDRs than classic statistical tests. The development of
a TDR goes through internal validation and external validation
(possibly on multiple external data-sets) before investigators are
confident enough to test the TDR in an RCT and ultimately
deploy it in clinical practice.

The GEM method presented in this tutorial can be useful for
discovery of treatment effect modifiers in clinical trials. We pre-
sented two illustrations in which the standard approach of testing
for effect modification one-by-one all individual covariates using
model (1) did not yield any potential individual biomarkers.
Jointly including all covariates and their interactions with treatment
did not provide evidence for effect modification either, although a
significant heterogeneity in the outcome was observed in those
cases. The simplicity of application, visualisation and interpretation
of the GEM method makes it an appealing tool among the various
methodologies for developing personalised TDRs.

As medical technology continues to evolve, producing increas-
ingly complex data modalities, research in precision medicine must
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Fig. 3 Values of the treatment decision rules based on the non-
linear (single-index model with multiple-links (SIMML)) and linear
generated effect modifier approaches, and the two trivial treatment
decisions to treat everyone with the antidepressant (Drug all) or
with placebo (Placebo all) with 95% confidence intervals.
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continue in order to accommodate these advances and make
optimal use of the available information. One such avenue is the
development of TDRs that can incorporate predictors that are not
only scalars (such as symptoms severity or response time on a
given task), but also more complex data objects, such as images or
time series of measurements. This is particularly relevant in psych-
iatry where neuroimaging and electroencephalogram measures are
frequently collected to characterise the structural and functional
integrity of the brain. The dominant practice of summarising neu-
roimaging data with the averages in specific brain regions can
lead to inefficiencies in the TDRs using such data as potential bio-
markers. Recent progress has been made using functional data ana-
lysis31 approaches to estimate TDRs in a regression context with
functional predictors.32–35 Through the optimal use of data, these
functional data approaches may be able to discover features in the
complex data that are strongly related to differential effects of
treatment.
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