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A Proof of Theorem 1

Assumption 1 in the main manuscript of the paper allows us to define the matrixA = E
(

∂
∂β′Ψ

(
Y,G(β),β

)∣∣∣
β=β∗

)
and its inverse. Let us write

Ψ̃(Y,G(β),β) = A−1Ψ(Y,G(β),β)

q′λn
(β) = A−1p′λn

(|β|)sign(β)

For simplicity, let Ψ̃i(β) = Ψ̃(Yi, Gi(β),β). We will show that

n−1/2
n∑
i=1

Ψ̃i(β)− n1/2q′λn
(β) = 0 (1)

has a solution β̂ satisfying ‖β̂ − β∗‖ = Op
(√
dn(n−1/2 + αn)

)
. Using the Taylor expansion at β = β∗, the

left-hand side of (1) is

n−1/2
n∑
i=1

Ψ̃i(β
∗) + n−1/2

n∑
i=1

∂Ψ̃i(β̌)

∂β′
(β−β∗) − n1/2q′λn

(β∗) − n1/2
∂q′λn

(β∗)

∂β′
(β−β∗){1 + oP (1)}, (2)

where β̌ is between β and β∗. For the second term of (2), multiplying by (β − β∗)′ gives

(β − β∗)′n1/2
{
n−1

n∑
i=1

∂Ψ̃i(β̌)

∂β′

}
(β − β∗) = n1/2‖β − β∗‖2{1 + oP (1)}, (3)

which follows from Assumptions 1 and 2 in the main manuscript of the paper. For any β such that ‖β−β∗‖ =
C
√
dn(n−1/2 + αn) for some constant C, multiplying the left-hand side of (1) by (β − β∗)′ gives

(β−β∗)′
{
n−1/2

n∑
i=1

Ψ̃i(β)−n1/2q′λn
(β)

}
= (β−β∗)′

{
n−1/2

n∑
i=1

Ψ̃i(β
∗)−n1/2q′λn

(β∗)

}
+n1/2‖β−β∗‖2{1+oP (1)},

(4)
where the right-hand side follows from (2) and (3), and from Assumption 3 on the penalty function. Notice
that ‖n−1/2

∑n
i=1 Ψ̃i(β

∗) − n1/2q′λn
(β∗)‖2 = Op(dn + dnnα

2
n), which follows from the definition of αn. It

follows from the Cauchy-Schwartz inequality that the first term on the right-hand side of (4) is of order ‖β−
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β∗‖Op
(√

dn + dnnα2
n

)
= C
√
dn(n−1/2 + αn)Op

(√
dn + dnnα2

n

)
= Op

(
Cdnn

1/2(n−1/2 + αn)2
)
. Moreover,

the second term on the right-hand side of (4) is C2dnn
1/2(n−1/2 +αn)2{1 + oP (1)}. For any arbitrary ε > 0,

as long as C is large enough, the second term on the right-hand side of (4) dominates the first term with
probability 1−ε (Ma and Li, 2010). Therefore, given any arbitrary ε > 0, for large enough C, the probability
for the right-hand side of (4) to be larger than zero is at least 1− ε. From the Brouwer’s fixed-point theorem
(e.g., Karamardian, 2014), with a probability at least 1 − ε, there exists at least one solution for (1) in the
region ‖β − β∗‖ = C

√
dn(n−1/2 + αn).

B Basis functions used in simulations

In Section 3.1 of the main manuscript of the paper, we perform two sets of simulations, “A” and “B”. For
simulation set “A”, we consider a non-sparse covariate model, where most of the covariates’ functional values
are nonzeros. For simulation set “B”, we consider a sparse covariate model, in which most of the covariates’
functional values are zeros. We provide below the set of basis functions used to define these covariate models.

B.1 Basis functions for simulation set “A”

For simulation set “A”, we consider a set of nonsparse basis. We combine and extend the simulation
scenarios of Greven et al. (2010) and Zipunnikov et al. (2014). We take the basis functions of the random in-

tercepts to be Φ
(0)
X (v) =

(
φ
(0)
X,1(v);φ

(0)
X,2(v); . . . ;φ

(0)
X,7(v);φ

(0)
X,8(v)

)
, where φ

(0)
X,1(v) =

√
2/3 sin(2πv), φ

(0)
X,2(v) =√

2/3 cos(2πv), φ
(0)
X,3(v) =

√
2/3 sin(4πv), φ

(0)
X,4(v) =

√
2/3 cos(4πv), φ

(0)
X,5(v) =

√
2/3 sin(3πv), φ

(0)
X,6(v) =√

2/3 cos(3πv), φ
(0)
X,7(v) =

√
2/3 sin(5πv), φ

(0)
X,8(v) =

√
2/3 cos(5πv). The basis functions of the random

slopes are taken to be Φ
(1)
X (v) =

(
φ
(1)
X,1(v);φ

(1)
X,2(v); . . . ;φ

(1)
X,7(v);φ

(1)
X,8(v)

)
, where φ

(1)
X,1(v) = 1/2, φ

(1)
X,2(v) =

√
3(2v−1)/2, φ

(1)
X,3(v) =

√
5(6v2−6v+1)/2, φ

(1)
X,4(v) =

√
7(20v3−30v2+12v−1)/2, φ

(1)
X,5(v) =

√
1/2 sin(6πv),

φ
(1)
X,6(v) =

√
1/2 cos(6πv), φ

(1)
X,7(v) =

√
1/2 sin(8πv), φ

(1)
X,8(v) =

√
1/2 cos(8πv). The basis functions of the

subject/visit-specific (noise) deviation are taken to be ΦU (v) =
(
φU,1(v);φU,2(v);φU,3(v), φU,4(v)

)
, where

φU,1(v) = 2φ
(1)
X,1(v), φU,2(v) =

√
4/3φ

(0)
X,1(v), φU,3(v) =

√
4/3φ

(0)
X,2(v), φU,4(v) =

√
4/3φ

(0)
X,3(v). See Figure 1

for these functions. All the functional objects are measured on a regular grid of p equidistant points in the
interval [0, 1].

B.2 Basis functions for simulation set “B”

For simulation set “B”, we consider a set of sparse basis. Upon evaluating on the p equidistant points

in [0, 1], the basis vectors for the random intercepts are taken to be φ
(0)
X,1 =

(
1, 1, 1, 1, 0, . . . , 0

)′
, φ

(0)
X,2 =(

0, . . . , 0︸ ︷︷ ︸
4

, 1, 1, 1, 1, 0, . . . , 0
)′

, φ
(0)
X,3 =

(
0, . . . , 0︸ ︷︷ ︸

8

, 1, 1, 1, 1, 0, . . . , 0
)′

, φ
(0)
X,4 =

(
0, . . . , 0︸ ︷︷ ︸

12

, 1, 1, 1, 1, 0, . . . , 0
)′

, and

the rest of the vectors are constructed in the same pattern. The basis for the slopes are taken to be φ
(1)
X,1 =(

1,−1, 1,−1, 0, . . . , 0
)′

, φ
(1)
X,2 =

(
0, . . . , 0︸ ︷︷ ︸

4

, 1,−1, 1,−1, 0, . . . , 0
)′

, φ
(1)
X,3 =

(
0, . . . , 0︸ ︷︷ ︸

8

, 1,−1, 1,−1, 0, . . . , 0
)′

, φ
(1)
X,4 =

(
0, . . . , 0︸ ︷︷ ︸

12

, 1,−1, 1,−1, 0, . . . , 0
)′

, and the rest of the vectors are constructed in the same pattern. For the

noise deviation basis, we set φU,1 = φ
(0)
X,1 and φU,2 = φ

(1)
X,1, and to represent potential non-sparsity of noise,

we set φU,3(v) = cos(2πv) and φU,4(v) = 1, both evaluated on the p points in [0, 1]. See Figure 2 for these
functions. In all cases, each of the basis is normalized to have a unit norm.
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Figure 1: (Appendix) The set of basis functions {Φ(0)
X,k(v), k = 1, . . . , 8}, {Φ(1)

X,k(v), k = 1, . . . , 8} and
{ΦU,k(v), k = 1, . . . , 4} used in simulation set “A”.
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Figure 2: (Appendix) The set of basis functions {Φ(0)
X,k(v), k = 1, . . . , 8}, {Φ(1)

X,k(v), k = 1, . . . , 8} and
{ΦU,k(v), k = 1, . . . , 4} used in simulation set “B”.

4



C Supplementary simulation results from Section 3.1

C.1 Estimation of the coefficients associated with the “error-free” covariates

As referenced in Section 3.1 of the main manuscript, we provide the simulation results for the estimation
error of β0. Here, β0 = (1, 0.5)′ corresponds to the true coefficient vector associated with the “error-free”

covariates Zi ∈ R2. In Figure 3, we report the boxplots of the estimation errors ‖β̂0 − β0‖ obtained from
the 100 simulations runs conducted in the simulation examples in Section 3.1 of the main manuscript, for
each combination of n ∈ {100, 200, 400} and p ∈ {50, 200}, along with a varying noise (in covariates) level
σ2 ∈ {0.25, 0.5, 1, 1.5}, for the simulation sets “A” and “B,” respectively.

The boxplots in Figure 3 indicate that the estimation errors for the “error-free” coefficients β0 from
the 3 approaches are comparable to one another, particularly between Cond.(LFPCA) and Näıve(LFPCA).
However, as the covariate measurement error noise level σ2 increases, the proposed method Cond.(LFPCA)
tends to estimate β0 slightly more accurately than Näıve(LFPCA). For the coefficients of the “error-prone”
covariates Xi, the näıve estimators would be consistent to a vector that is different from the true value of
the coefficients. This bias of the näıve estimators appeared to also affect the estimation accuracy for β0 of
the “error-free” Zi. Overall, Cond.(LFPCA) performed better than Näıve(LFPCA) in the estimation of β0.

C.2 p = 800 case

We also report the cases where we used p = 800 number of sample points per basis curves {Φ(0)
X,k(v), k =

1, . . . , NX}, {Φ(1)
X,k(v), k = 1, . . . , NX} and {ΦU,k(v), k = 1, . . . , NU} in the data generation model (22) of the

main manuscript, for the both simulation settings of “A” and “B.” As in the main manuscript, we report
the estimation error, ‖β̂1 − β1‖/

√
2p, associated with the coefficient vector β1 ∈ R2p of the “error-prone”

covariates Xi.
The results illustrated in Figure 4 are qualitatively similar to those presented in Figures 1 and 2 of the

main manuscript with p ∈ {50, 200} for both of the settings “A” and “B,” except that the advantage of using
the LFPC dimension reduction in estimating β1 becomes more clear in the p = 800 cases. In Figure 4, for
the method Näıve(Variable-wise), particularly for the sparse basis settings (the set “B”) (i.e., the bottom
row), the estimation errors appear to decrease as the measurement noise variance σ2 increases to σ2 = 1.5;
however, this is because the approach Näıve(Variable-wise) simply estimates all the coefficients of β1 as zeros
(as the noise dominates the true values of the covariates) and fails to extract any information from the data.

D Computational efficiency

To investigate computation time we considered different combinations of number of subjects n ∈ {100, 200, 300}
(with the number of visits Ji = 4 for all i = 1, . . . , n), and number of sample points per basis curves
p ∈ {50, 100, 200, 400, 800}. All other parameters were chosen as for the simulations described in Section 3.1
of the main manuscript. We illustrate the results from the simulation set “A” for the case of the covariate
noise variance σ2 = 1. The results from the simulation set “B” and for the case of the covariate noise
variance σ2 ∈ {0.25, 0.5, 1.5} were qualitatively similar.

Figure 5 provides the averaged computation time (in seconds), averaged over 100 simulation runs, for the
3 estimation methods considered in Section 3.1 of the main manuscript. All method are implemented in R
(R Core Team, 2019). Computation times were measured on a MacBook computer running 64-bit, 2.5 GHz
Intel Core i7, with 16 GB random access memory.

For Cond.(LFPCA) and Näıve(LFPCA), computation time is roughly linear in p. The LFPC dimension
reduction is computationally linear in the dimension p (Zipunnikov et al., 2014). This is in contrast to
Näıve(Variable-wise) whose computation time is nonlinear (between quadratic and exponential) in p. Among
the 3 approaches, Näıve(Variable-wise) requires the most computation time when p = 800.

Once representing the high-dimensional random effects Xi ∈ R2p via moderate dimensional longitudinal
principal components, the iterative procedure in the Algorithm 1 is implemented relatively quickly.
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Figure 3: (Appendix) Boxplots of the estimation errors, obtained from 100 simulation runs, for the coefficient
vector β0 associated with the “error-free” covariates, for a varying noise (in covariates) variance σ2 ∈
{0.25, 0.5, 1, 1, 5} and for each combination of n ∈ {100, 200, 400} and p ∈ {50, 200}; the top two rows
correspond to the simulation set “A,” and the bottom two rows correspond to the the simulation set “B.”
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Figure 4: (Appendix) Boxplots of the estimation errors, obtained from 100 simulation runs, for the coefficient
vector β1 associated with the “error-prone” covariates for the p = 800 cases, for a varying noise (in covariates)
variance σ2 ∈ {0.25, 0.5, 1, 1, 5} and for each n ∈ {100, 200, 400}; the top row corresponds to the simulation
set “A,” and the bottom row corresponds to the the simulation set “B.”
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Figure 5: (Appendix) The averaged computation time (in seconds) with a varying p ∈ {50, 100, 200, 400, 800}
for the 3 estimation methods, for each n ∈ {100, 200, 300}.

The difference in the computation times between Cond.(LFPCA) (the red solid line) and Näıve(LFPCA)
(the blue dashed line) represents the computation time that corresponds to the outer loop iterations (k =
0, 1, 2, . . . , ) of the Algorithm 1, which is required for implementing the proposed conditional method. The

Algorithm 1 converges (i.e., the difference in the iterates β̂(k) {k = 0, 1, . . .} is less than a prespecified
convergence tolerance) often within 5 outer iterations. Figure 5 indicates that the LFPC dimension reduction
procedure takes a larger fraction of the computation time for Cond.(LFPCA) than that taken from the outer
loop iterations of the Algorithm 1.
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