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We consider a logistic regression model for a binary response where part of its

covariates are subject‐specific random intercepts and slopes from a large number of

longitudinal covariates. These random effect covariates must be estimated from the

observed data, and therefore, the model essentially involves errors in covariates.

Because of high dimension and high correlation of the random effects, we employ

longitudinal principal component analysis to reduce the total number of random effects

to some manageable number of random effects. To deal with errors in covariates, we

extend the conditional‐score equation approach to this moderate dimensional logistic

regressionmodel with random effect covariates. To reliably solve the conditional‐score

equations in moderate/high dimension, we apply a majorization on the first derivative

of the conditional‐score functions and a penalized estimation by the smoothly clipped

absolute deviation. The method was evaluated through a set of simulation studies and

applied to a data set with longitudinal cortical thickness of 68 regions of interest to

identify biomarkers that are related to dementia transition.

KEYWORDS
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1 | INTRODUCTION

In this paper, we estimate a logistic regression model for a binary response where part of its covariates are subject‐specific random intercepts and

random slopes from a large number of longitudinal covariates. As the random intercepts and slopes are not observable, these random effect

covariates must be estimated from the observed longitudinal high‐dimensional data. Therefore, the model essentially involves errors in covariates,

and we aim to improve parameter estimation accuracy by taking into account the errors. This study was motivated by Alzheimer's Disease

Neuroimaging Initiative (ADNI) whose primary aim is to identify biomarkers that are related to dementia transition in elderly participants.

Particularly, we analyse longitudinal trajectories of cortical thickness measures to identify biomarkers of dementia transition among the

participants with mild cognitive impairment (MCI).

In the neuroimaging literature, statistical models are typically based on measurement error‐free assumptions. However, the accuracy of

parameter estimates deteriorates due to scan‐to‐scan variation (e.g., Iscan et al., 2015) present in imaging variables. In particular, if the covariates

are subject‐specific random effects obtained from a longitudinal high‐dimensional (imaging) covariate, the effect of the measurement error can be

amplified due to the uncertainty associated with the random effect estimation. To address this, we develop a method accounting for errors in

covariates that is applicable to a longitudinal high‐dimensional covariate setting.

For generalized linear models (GLMs) with errors in covariates, various statistical procedures have been developed. For earlier development,

see Bickel and Ritov (1987) and Carroll, Knickerbocker, and Wang (1995) among many others. Further systematic review can be found in Carroll,

Ruppert, Stefanski, and Crainiceanu (2006) and Yi (2016) and many others cited therein. Most related to our approach is the conditional‐score
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method of Stefanski and Carroll (1987) for an unbiased estimation of the parameter in the presence of errors in covariates. Li, Zhang, and Davidian

(2004) adopted their conditional‐score method to estimate a GLM with errors in covariates, where its covariate is a subject‐specific univariate

trajectory modelled by longitudinal random effects. Our approach is a high‐dimensional counterpart of the work by Li et al. (2004). However,

the extension to a high‐dimensional longitudinal covariate is not trivial, as the number of random effects needed for characterizing the high‐

dimensional longitudinal trajectory increases dramatically and the associated random effects can be highly correlated.

In spite of the rich literature in the subject, there are only few studies on estimation of a logistic regression measurement error model where its

covariates are moderate/high dimensional. Generally, estimation of a high‐dimensional non‐linear measurement error model is challenging. Ma and

Li (2010) developed a class of covariate selection procedures for partially linear logistic regression measurement error models. However, their pro-

cedures and algorithms may not scale well to a high‐dimensional covariate setting. Recently, Datta and Zou (2017) further studied theoretical

properties and cross‐validation for measurement errors. Besides classical high‐dimensional regression, Stefanski, Wu, and White (2014) proposed

a variable selection method for nonparametric classification. Cai (2015) considered the simulation extrapolation (SIMEX) method and applied it to a

functional covariate under the assumption of uncorrelated measurement errors in a scalar‐on‐function regression.

For a regression with a longitudinal high‐dimensional covariate, the covariance of the covariate measurement error is not easily characterizable

due to the high correlation/high dimensionality of the covariate, which makes applications of SIMEX‐like algorithms to handle the covariate mea-

surement errors generally difficult. In the presence of high correlation among the covariates, employing a regularization estimation such as the

elastic‐net (Zou & Hastie, 2005) for the outcome regression model is also prone to severe inaccuracy (as illustrated in our simulation examples),

as most regularization‐based methods assume weakly correlated or independent covariates.

In this paper, we employ the longitudinal functional principal component analysis (LFPCA; Greven, Crainiceanu, Caffo, & Reich, 2010;

Zipunnikov et al., 2014) to account for the correlation structure in the longitudinal covariates. To account for errors in covariates that occur from

the estimation of subject‐specific longitudinal random effects, we extend the unbiased conditional‐score equations of Stefanski and Carroll (1987)

to this moderate/high‐dimensional logistic regression model with random effect covariates. To reliably solve the conditional‐score equations in

moderate/high dimension, we apply a majorization on the first derivative of the conditional‐score functions and a penalized estimation by the

smoothly clipped absolute deviation (SCAD; Fan & Li, 2001).

Although not directly related to this paper, several other works on measurement error models include Li, Shao, and Palta (2005) for a longitu-

dinal outcome, Li, Tang, and Lin (2009) and Huque, Bondell, Carroll, and Ryan (2016) for a spatial regression setting, Midthune, Carroll, Freedman,

and Kipnis (2016) for including interaction terms, and Zhang, Wang, Ma, and Carroll (2017) for model selection for prediction.

The paper is organized as follows. In Section 2.1, we introduce an LFPC representation of the covariate model. In Section 2.2, we construct a

set of unbiased conditional‐score equations in the longitudinal high‐dimensional covariate setting. In Section 2.3, we develop an algorithm to

obtain a solution to the penalized conditional‐score equations. We present simulation studies for assessing the performance of the proposed

method in Section 3, and an application of the method to ADNI data is illustrated in Section 4. The paper concludes with discussion in Section 5.
2 | METHOD

We consider a random intercepts and slopes model for characterizing a longitudinal covariate vector Wij ∈ Rp

Wij ¼ Xð0Þ
i þ Xð1Þ

i tij þ Uij ði ¼ 1; …; n; j ¼ 1; …; JiÞ; (1)

for the visit times ti1; …; tiJi . In Equation (1), subject‐specific vectors Xð0Þ
i ∈ Rp and Xð1Þ

i ∈ Rpcorrespond to the random intercepts and random

slopes, respectively. These random effects Xi : ¼ Xð0Þ′
i ;Xð1Þ′

i

� �′
∈ R2p (i=1,…,n) are assumed to be distributed with zero mean and a covariance

∑X ¼ ∑ð0;0Þ
X ∑ð0;1Þ

X

∑ð1;0Þ
X ∑ð1;1Þ

X

" #
, where ∑ða;bÞ

X ¼ E XðaÞ
i XðbÞ′

i

� �
, a,b∈{0,1}, uncorrelated with the p×1 noise vectors Uij ∼ Nð0; ∑UÞ.

For a binary outcome Yi∈{0,1}, we consider a logistic regression model

E YijZi; Xið Þ ¼ Fðb0 þ β′0Zi þ β′1XiÞ ði ¼ 1; …; nÞ; (2)

in which F (u):=1/(1+e−u) (the inverse‐logit function). In Equation (2), b0 ∈ R is an intercept, Zi ∈ Rq corresponds to a vector of “error‐free” covar-

iates (such as age and gender), and Xi ∈ R2p corresponds to the vector of the subject‐specific “error‐prone” random effects, which must be esti-

mated from the observed longitudinal covariates Wij ∈ Rp, in the presence of the noise Uij ∈ Rp in Equation (1). Our focus is on the estimation of

the coefficient vector β1 ∈ R2p associated with Xi, accounting for the errors in covariates that occur from Uij.

In Equation (1), without loss of generality, Wij is assumed to have mean zero, as it can be priorly shifted by a fixed effect, which can be con-

sistently estimated, for example, by variable‐wise means (Greven et al., 2010).
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2.1 | Longitudinal principal component analysis representation

The high dimensionality/high correlation among Wij makes the covariance ΣU of the noise Uij not easily characterizable. To handle this, we repre-

sent model (1) using the LFPC (Greven et al., 2010; Zipunnikov et al., 2014) mixed effects model framework. Let us represent Xi ≈ ΦX
~Xi, where

ΦX ¼ Φð0Þ′
X ;Φð1Þ′

X

� �′
is a 2p×NX matrix of the leading NX eigenvectors of ΣX, and ~Xi ¼ ~xi1; …; ~xiNX

ð Þ′ ∈ RNX is the associated subject i‐specific

eigenscores. Let us represent Uij ≈ ΦUŨij, where ΦU is a p×NU matrix of the leading NU eigenvectors of ΣU, and Ũij ¼ ũij1; …; ũijNU

� �′
∈ RNU is

the associated subject(i)‐ and visit(j)‐specific eigenscores. Under the LFPC framework, model (1) can be rewritten as

Wij ¼ Φð0Þ
X

~Xi þ tijΦ
ð1Þ
X

~Xi þΦUŨij ði ¼ 1; …; n; j ¼ 1; …; JiÞ; (3)

where ð~xia; ~xibÞ ∼ ð0; 0; λðaÞX ; λðbÞX ; 0Þand ðũija; ũijbÞ ∼ Nð0; 0; λðaÞU ; λðbÞU ; 0Þ, in which “· ∼ ðμ1; μ2; σ2
1; σ

2
2; ρÞ” represents a pair of variables that has a

distribution with mean (μ1,μ2), variance ðσ2
1; σ

2
2Þ, and correlation ρ; N denotes the Gaussian distribution. The eigenvectors (ΦX,ΦU) and the

eigenscores ð~Xi; ŨijÞ of the LFPC model (3) can be obtained by the least squares estimation of the covariance matrices ΣX and ΣU, and by the best

unbiased linear predictors (Greven et al., 2010; Zipunnikov et al., 2014).

Representation (3) implies ∑X ¼ ΦXΛXΦ
′
Xand ∑U ¼ ΦUΛUΦ

′
U, where the diagonal matrices ΛX and ΛU are the matrices with the diagonal

elements ðλð1ÞX ; …; λðNXÞ
X Þ and ðλð1ÞU ; …; λðNUÞ

U Þ, respectively. Several ways for choosing NX and NU were discussed in Greven et al. (2010).

The random effect dimension (2p) often far exceeds the number of observations (n). However, the dimension 2p can be considerably reduced

by exploiting the intrinsic correlation structure in Xi, represented by the covariance ΣX. By representing the coefficients β1 ∈ R2p on the basis of

the eigenvectors ΦX of ΣX,

β1 ¼ ΦX
~β1; (4)

where ~β1 : ¼ Φ′
Xβ1 ∈ RNX . Under representations (3) and (4), the primary outcome model (2) is rewritten as

E YijZi; ~Xi

� �
¼ F b0 þ β′0Zi þ ~β′

1
~Xi

� �
ði ¼ 1; …; nÞ: (5)

2.2 | Conditional‐score equations

We can rearrange model (3) as

Wi ¼ BðXÞ
i

~Xi þ BðUÞ
i Ũi ði ¼ 1; …; nÞ; (6)

whereWi : ¼ ðW′
i1; …;W′

iJi
Þ′ ∈ RpJi is the stack‐up vector containingWij ∈ Rp for j=1,…,Ji; the pJi×NX matrix BðXÞ

i : ¼ 1Ji⊗Φð0Þ
X þ ti⊗Φð1Þ

X , in which ⊗

is the Kronecker product, 1Ji : ¼ ð1;1; …;1;1Þ′ ∈ RJiand ti : ¼ ðti1; …; tiJi Þ′ ∈ RJi ; the pJi×NUJi matrix BðUÞ
i : ¼ IJi⊗ΦU, in which IJi is the Ji×Ji identity

matrix; Ũi : ¼ ðŨ′
i1; …;Ũ′

iJi
Þ′ ∈ RNUJi is the stack‐up vector containing Ũij ∈ RNU for j=1,…,Ji. Note that Ũi ∼ Nð0; IJi⊗ΛUÞ. Multiplying both sides of

model (6) by BðXÞ′
i BðXÞ

i

� �−1

BðXÞ′
i gives

BðXÞ′
i BðXÞ

i

� �−1

BðXÞ′
i Wi ¼ ~Xi þ BðXÞ′

i BðXÞ
i

� �−1

BðXÞ′
i BðUÞ

i Ũi;

which is equivalently

W*
i ¼ ~Xi þ Ũ*

i ði ¼ 1; …; nÞ; (7)

where W*
i : ¼ BðXÞ′

i BðXÞ
i

� �−1

BðXÞ′
i Wi ∈ RNX and Ũ*

i : ¼ BðXÞ′
i BðXÞ

i

� �−1

BðXÞ′
i BðUÞ

i Ũi ¼ HiŨi ∈ RNX , in which Hi : ¼ BðXÞ′
i BðXÞ

i

� �−1

BðXÞ′
i BðUÞ

i is an NX×NUJi

matrix. As Ũ*
i ¼ HiŨi, we have Ũ*

i ∼ Nð0; ΩiÞ withΩi : ¼ HiðIJi⊗ΛUÞH′
i . In Equation (7), the “noise” component Ũ*

i ∈ RNX associated with the “signal”

component ~Xiis additive, mean zero, and normally distributed. Thus, representation (7) is under the setting of the conditional‐score function method

of Stefanski and Carroll (1987). For the joint model of the covariates (7) and the outcomes (5), one useful sufficient statistic for the latent com-

ponent ~Xi is given by Stefanski and Carroll (1985, 1987),
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Δi : ¼ W*
i þ YiΩi

~β1 ði ¼ 1; …; nÞ: (8)

For joint models (7) and (5), the distribution of Yi given ðZi; ~Xi; ΔiÞ has the following conditional expectation:

E YijZi; ~Xi; Δi

� �
¼ E YijZi; Δið Þ ¼ F b0 þ β′0Zi þ ~β′

1Δi − ~β′
1Ωi

~β1=2
� �

;

free of the “error‐prone” variable ~Xi , which leads to the unbiased score equations of Stefanski and Carroll (1985, 1987):

n−1 ∑
n

i¼1
fYi − Fðb0 þ β′0Zi þ ~β′

1siÞgð1; Z′
i ; s

′
i Þ′ ¼ 0; (9)

where si : ¼ Δi −Ωi
~β1=2 (i=1,…,n), in which Δi is defined in Equation (8). Let us write

GiðβÞ: ¼ 1;Z′
i ; s

′
i

� �′
∈ R1þd ði ¼ 1; …; nÞ; (10)

and then Equation (9) can be rewritten as

n−1 ∑
n

i¼1
Ψ Yi; GiðβÞ; βð Þ : ¼ n−1 ∑

n

i¼1
fYi − Fðβ′GiÞgGi ¼ 0; (11)

where β: ¼ ðb0; β′0; ~β′
1Þ′ ∈ R1þd; the number d(=q+NX) denotes the dimensionality of ðβ′0; ~β′

1Þ′ ∈ Rd. In Equation (11), for the notational simplicity,

the functional argument (β) of Gi(β) was omitted. Equation (11) is in the form of standard score equations in logistic regression, except for the

dependence of the “covariate” Gi on the parameter β (as si of Equation 10 depends on ~β1), and thus the “linear predictor” β′Gi in Equation (11)

is non‐linear with respect to β.
ðXÞ
Remark 1. If the LFPC dimension reduction (3) is not performed, then in representation (6),Bi ¼ 1Ji⊗Ip; ti⊗Ipð Þ is a pJi×2p matrix;

BðUÞ
i ¼ IJi⊗Ip is a pJi×pJi matrix; ~Xi (=Xi) is a 2p×1 vector; Ũi (¼ Ui ¼ ðU′

i1; …;U′
iJi
Þ′) represents a pJi×1 vector that follows

Nð0; IJi⊗∑UÞ; the noise covariance ΣU can be estimated via (restricted) maximum likelihood estimation (MLE) on the basis of model

(1), given observed covariates. The sufficient “statistic” (8) of the random effects Xi is given by Δi=Wi+YiΩiβ1, in which

Ωi ¼ Hi IJi⊗∑Uð ÞH′
i , and the parameter β in Equation (11) is β ¼ ðb0; β′0; β′1Þ′; that is, β1 takes the part of ~β1.
2.3 | Penalized estimation via coordinate descent

Carroll et al. (2006) noted that a Newton‐Raphson‐type algorithm can be utilized to solve the unbiased score equations of Stefanski and Carroll

(1985, 1987). If β̂ represents a solution to the estimating equation (11), then
ffiffiffi
n

p ðβ̂ − βÞ is asymptoticallyNð0; A−1BðA−1Þ′Þ, where matrices A and B

represent the matrices of the first derivative (with respect to β) and the covariance, respectively, of the conditional‐score functionΨ Y; GðβÞ; βð Þ in
Equation (11). Matrix A can be consistently estimated by

Â ¼ n−1 ∑
n

i¼1

∂

∂β′
Ψ Yi;GiðβÞ; βð Þjβ¼β̂ (12)

and the solution β̂ can be obtained via Newton–Raphson iterations:

β̂ðkþ1Þ ¼ β̂ðkÞ þ ÂðkÞ
h i−1

n−1 ∑
n

i¼1
Ψ Yi; Giðβ̂ðkÞÞ; β̂ðkÞ
� �

; (13)

where ÂðkÞ is Â in Equation (12), evaluated at its kth iteration, β ¼ β̂ðkÞ. In this paper, to handle the moderate/high‐dimensional parameter β, we

consider a penalized estimating equation (Ma & Li, 2010) of the form

n−1 ∑
n

i¼1
Ψ Yi; GiðβÞ; βð Þ − p′λðjβjÞsignðβÞ ¼ 0; (14)

and use a coordinate descent (CD) algorithm to iteratively solve Equation (14) for β. In Equation (14), the function

p′λðjβjÞ: ¼ 0; p′λðjβ1jÞ; …; p′λðjβdjÞ
� �

∈ Rdþ1 represents the vector of the first derivatives of a penalty function pλ(·) evaluated at |β| (notice that



PARK AND LEE 5 of 15
intercept b0 is not penalized), signðβÞ ¼ sgnðb0Þ; sgnðβ1Þ; …; sgnðβdÞð Þ′, where sgn(t):=I(t>0)−I(t<0), and the notation p′λðjβjÞsignðβÞ denotes the
component‐wise product between the two terms. In Equation (14), if the SCAD (Fan & Li, 2001) penalty is used, we can write

p′λðjβjÞ ¼ λIðjβj ≤ λÞ þ ðaλ−jβjÞþ
a − 1

Iðjβj > λÞ; (15)

for |β|>0, and p′λð0Þ ¼ 0, in which λ>0 needs to be selected to optimize the estimation/covariate selection performance, and a=3.7 is often used in

many applications.

Paralleling iteration (13), given the (kth) iteration β̂ðkÞ, the subsequent Newton–Raphson iteration associated with Equation (14) is given by

β̂ðkþ1Þ ¼ solve
β

n−1 ∑
n

i¼1
wðkÞ

i GðkÞ
i rðkÞi − GðkÞ′

i β
� �

− p′λðjβjÞsignðβÞ ¼ 0

� �
; (16)

in which the score function Ψ Yi; GiðβÞjβð Þ in Equation (14) is linearly approximated at β ¼ β̂ðkÞ, with

wðkÞ
i ¼ _FðGðkÞ′

i β̂
ðkÞÞ

rðkÞi ¼ GðkÞ′
i β̂

ðkÞ þ ½ _FðGðkÞ′
i β̂

ðkÞÞ�−1½Yi − FðGðkÞ′
i β̂

ðkÞÞ�;
(17)

whereGðkÞ
i denotes the vector Gi(β) in Equation (10) evaluated at the (kth) iteration β̂ðkÞ, and _Fð·Þ is the first derivative of the (inverse‐logit) function

F (·) with respect to ·. The Newton–Raphson step (16) constitutes the (kth) “outer” loop of solving Equation (14). We will use a CD algorithm to

obtain the subsequent iteration β̂ðkþ1Þ of the “outer” step (16); this constitutes the “inner” CD loop, defined within each (the kth) “outer” loop step

(16). We use the notation β̂ðk;mÞ to keep track of the (mth) “inner” CD iteration, defined within each (kth) step of Equation (16). Jiang and Huang

(2014) developed an efficient implementation of CD, termed the majorization minimization by CD (MMCD), which we employ in this paper to

obtain Equation (16), for each (kth) “outer” loop step. CD cyclically updates each (jth) coordinate while holding the other coordinates fixed, until

convergence of its iteration:

β̂ðk;mÞ
j ¼ ðβ̂ðk;mþ1Þ

0 ; …; β̂ðk;mþ1Þ
j ; β̂ðk;mÞ

jþ1 ; …; β̂ðk;mÞ
d Þ′ ∈ R1þd ð j ¼ 0; 1; …; dÞ; (18)

which represents the value of the mth “inner” iteration β̂ðk;mÞ, at the time of the jth coordinate's update. Given the equations in Equation (16), a

typical CD updates the iteration β̂ðk;mÞ
j−1 to β̂ðk;mÞ

j by solving the following equation:

n−1 ∑
n

i¼1
wðkÞ

i ðGðkÞ
ij Þ2

� �
βj þ p′λðjβjjÞsignðβjÞ−n−1 ∑

n

i¼1
wðkÞ

i GðkÞ
ij rðkÞi − GðkÞ′

i β̂ðk;mÞ
j−1

� �
− n−1 ∑

n

i¼1
wðkÞ

i ðGðkÞ
ij Þ2

� �
β̂ðk;mÞ
j ¼ 0; (19)

for βj ∈ R and plugging the solution into the jth “coordinate,” β̂ðk;mþ1Þ
j , of iteration (18). (In Equation 19, GðkÞ

ij ∈ R represents the jth element of

GðkÞ
i ∈ Rdþ1.) For Equation (19), the MMCD approach of Jiang and Huang (2014) assumes a majorization of the “scaling” factor

f∑n
i¼1w

ðkÞ
i ðGðkÞ

ij Þ2g attached to βj, by some constant M>0, that is, ∑n
i¼1w

ðkÞ
i ðGðkÞ

ij Þ2 ≤ M, for all j=0,…,d (for each k). (That this majorization is useful

for solving Equation 14 will be explained at the end of this section.) Given such M, the update rule associated with Equation (18), using the SCAD

penalty (15), is given by

β̂ðk;mþ1Þ
j ¼ sgnðτjÞðjτjj−λÞþ

M
Ijτj j≤ð1þMÞλ þ

sgnðτjÞðjτjj−aλ=ða−1ÞÞþ
M − 1=ða − 1Þ Ið1þMÞλ<jτj j≤aλM þ τj

M
Ijτj j>aλM; (20)

where τj ¼ Mβ̂ðk;mÞ
j þ n−1∑n

i¼1G
ðkÞ
ij ðYi − FðGðkÞ′

i β̂ðk;mÞ
j−1 ÞÞ; for j=1,…,d. For the intercept, that is, for j=0,

β̂ðk;mþ1Þ
0 ¼ τ0=M; (21)

where τ0 ¼ Mβ̂ðk;mÞ
0 þ n−1∑n

i¼1G
ðkÞ
i1 ðYi − FðGðkÞ′

i β̂ðk;mÞÞÞ, in which β̂ðk;mÞ ¼ ðβ̂ðk;mÞ
0 ; β̂ðk;mÞ

1 ; …; β̂ðk;mÞ
d Þ′. The convergence of iteration (18) (over the “inner”

loop m) defined by the rules (20) and (21) to a solution of the (kth) equations of Equation (16) (for each k) is given by the Theorem 1 of Jiang and

Huang (2014). (In Equation 20, (·)+ denotes the thresholding operator.)

For each j∈{1,…,d}, if we standardize fðGðkÞ
ij Þni¼1g to have (mean 0 and) unit variance, then the process of seeking a majorization constant M,

which satisfies ∑n
i¼1w

ðkÞ
i ðGðkÞ

ij Þ2 ≤ M, for all j and k, is reduced to finding an upper bound for the weights wðkÞ
i , uniformly over all i and k. In logistic

regression, the weight wðkÞ
i in Equation (17) can be written as wðkÞ

i ¼ μ̂ðkÞ
i ð1 − μ̂ðkÞ

i Þ, for some probability μ̂ðkÞ
i (i.e., 0 ≤ μ̂ðkÞ

i ≤ 1), which implies
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wðkÞ
i ≤ 1=4, for all i and k. Thus, the uniform upper bound M can be set at 1/4 for the case of a logistic regression. We summarize below the pro-

posed algorithm for estimating model (2) via solving Equation (14).

Throughout the paper, λ>0 is selected by maximizing a five‐fold cross‐validated averaged predictive area under the receiver operating charac-

teristic curve, and a=3.7. Given an estimate of ~β1 of Equation (5), the estimate of β1 of Equation (2) can be obtained via relationship (4).

As a consequence of the majorization with M, updating rules (20) and (21) does not depend on the quantities wðkÞ
i and rðkÞi in Equation (17).

Therefore, we do not need to update wðkÞ
i and rðkÞi but only update GðkÞ

i for each “outer” loop step k, which simplifies Algorithm 1. Moreover,

the majorization on the “scaling” factor f∑n
i¼1w

ðkÞ
i ðGðkÞ

ij Þ2g of Equation (19) removes the potential numerical instability that might exist in solving

Equation (14). As wðkÞ
i and GðkÞ

ij depend on β̂ðkÞ, the “scaling” factor f∑n
i¼1w

ðkÞ
i ðGðkÞ

ij Þ2g attached to βj in Equation (19) is a highly non‐linear function

of β̂ðkÞ. This implies that the scale of the solution βj of Equation (19) can be highly sensitive to a small change in the values of the (kth) “outer”

iteration, β̂ðkÞ, which might cause instability over the “outer” iteration (16). (This instability is also expected for the Newton–Raphson iteration

13, due to the matrix of the first derivative A in Equation 12, which involves the derivative of the non‐linear “linear predictor” β′Gi in Equation 11

with respect to β, resulting in a high degree of non‐linearity in the update rule of Equation 13.) However, by using the majorization and the asso-

ciated MMCD in performing the “inner” loop step, Algorithm 1 becomes independent of this highly non‐linear (k‐dependent) scaling factor.

2.4 | Theoretical result

Concerns about the estimation bias due to the error in covariates in a moderate/high‐dimensional random effect covariate setting prompted us to

consider the penalized conditional‐score equation of form (14). In this subsection, we provide an asymptotic property of the penalized estimating

equation estimator β̂ that solves Equation (14), which follows from the asymptotic property of the penalized estimating equation of Ma and Li

(2010), when the dimension, 1+dn, of the parameter β increases along with the sample size n. Here, we write d as dn to emphasize its dependence

on n.

Let us denote β* ¼ ðb*0; β*1; …; β*dn Þ′ as the true value of β. Let αn ¼ maxfjp′λn ðjβ*j jÞj:β*j ≠ 0g; where we write λ as λn to emphasize its depen-

dence on n. We state below regularity conditions on the conditional‐score function Ψ(Y,G(β),β) and the penalty function p′λðjβjÞin Equation (14).

*
Assumption 1. The expectation of the first derivative of Ψ(Y,G(β),β) with respect to β, that is, ∂Ψ(Y,G(β),β)/∂β′, exists at β=β , and

its eigenvalues are bounded below and above by positive constants. For any entry Sjk in ∂Ψ(Y,G(β*),β*)/∂β′, EðS2jkÞ is bounded above

by a constant.
Assumption 2. The second derivatives of Ψ(Y,G(β),β) with respect to β exist, and the entries are uniformly bounded by some con-
stant in a large enough neighbourhood of β*.
′′ ′′
Assumption 3. For the penalty function, there exist constants C and D such that if γ1,γ2>Cλ, then jpλ ðγ1Þ−pλ ðγ2Þj ≤ Djγ1 − γ2j.
The SCAD penalty (15) satisfies Assumption 3, and Assumptions 1‐2 are mild regularity conditions on Ψ(Y,G(β),β).

Theorem 1. Under Assumptions 1‐3, and if d4n−1→0, λ →0 as n→∞, then, with probability tending to 1, there is an estimator β̂ that
n n

solves Equation (14) such that ‖β̂ − β*‖ ¼ Opf
ffiffiffiffiffi
dn

p
ðn−1=2 þ αnÞg.
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The proof of Theorem 1 is provided in the Supporting Information. Theorem 1 indicates that the convergence rate depends on λn and the pen-

alty function through αn. To achieve root(n/dn) convergence rate of β̂, αn=O(n
−1/2). Note that, for the SCAD penalty (15), αn=0 as λn→0 (for the L1

penalty, αn=λn), and therefore the resulting penalized conditional‐score estimate is root(n/dn) consistent.
3 | SIMULATION STUDY

In Section 3.1, we present simulation studies for assessing the estimation performance of the proposed method, in settings where the outcome is

regressed on a longitudinal functional covariate. In Section 3.2, we present the variable selection/estimation performance in moderate dimension.

3.1 | Simulation 1: Models with a longitudinal functional covariate

Following Greven et al. (2010), we consider the longitudinal functional covariates Wij(v) from

WijðvÞ ¼ ∑
NX

k¼1
~xi;kΦ

ð0Þ
X;kðvÞ þ tij ∑

NX

k¼1
~xi;kΦ

ð1Þ
X;kðvÞ þ ∑

NU

k¼1
ũij;kΦU;kðvÞ þ ϵijðvÞ; (22)

where the LFPC scores ~xi;k ∼ Nð0; λðkÞX Þand ũij;k ∼ Nð0; σ2λðkÞU Þ, in which λðkÞX ¼ λðkÞU ¼ 1
2
k−1

, k=1,2,…, and the scale parameter σ2∈{0.25,0.5,1,1.5}

associated with the LFPC noise scores, ũij;k , controls the contribution of the LFPC noise component to the variance ofWij(v). The term ϵij(v) in Equa-

tion (22) accounts for the random homoscedastic white noise and is assumed to be i.i.d.Nð0; s2Þ for some s2>0 (which will be specified later) inde-

pendently of all other LFPC processes. We set NX=8 and NU=4. In the Supporting Information, we provide the sets of basis

fΦð0Þ
X;kðvÞ; k ¼ 1; …; NXg, fΦð1Þ

X;kðvÞ; k ¼ 1; …; NXg, and {ΦU,k(v),k=1,…,NU} of Equation (22), used to specify a nonsparse (Set “A”) or sparse (Set

“B”) LFPC model.

To obtain a (length p) vector Wijð ∈ RpÞ in the framework of model (1), we evaluate model (22) on the grid of p∈{50,200} equidistant points in

[0,1]. Each of the evaluated LFPC basis vectors is normalized to have a unit L2 norm, and the corresponding (length p) vectors Wijð ∈ RpÞ are

obtained from Equation (22). The visit time points, tij, are generated from Unif(0,Ji), sorted in an increasing order, and standardized to have mean

0 and unit variance, for each subject i. We set the number of visits Ji=4 for all i=1,…,n. With the normalized LFPC basis and the scaled and centred

visit times, the signal‐to‐noise ratio (SNR) of the LFPC component of covariate model (22) is ∑8
k¼1λ

ðkÞ
X þ ∑4

k¼1σ
2λðkÞU

� �
=ðps2Þ. We set s2=0.05 for

p=50 (and s2=0.0125 for p=200), setting SNR of the LFPC component of Equation (22) approximately at 1, for the case of σ2=0.25. This setting

of (LFPC) SNR=1 with σ2=0.25 is similar to that of the data set analysed in Section 4.

We generate the “error‐free” covariates Zi ∼ Nð0; I2Þ. Then we generate the outcome Yi∈{0,1} using model (5), on the basis of the longitudinal

scores ~Xi ¼ ð~xi1; …; ~xiNX
Þ′ obtained from covariate model (22). In Equation (5), we set β0=(1,0.5)′,

~β1 ¼ ~β11; …; ~β18

� �′
¼ 4;−2;1;−0:5;0;0;0;0ð Þ′ ∈ RNX , and b0=0. In the framework of outcome model (2), this sets the “true” β1ð ∈ R2pÞ (associ-

ated with the 2p number of random intercepts/slopes) as β1 ¼ ΦX
~β1; in which ΦX ¼ ~Φð0Þ

X;1; …; ~Φð0Þ
X;NX

� �′
; ~Φð1Þ

X;1; …; ~Φð1Þ
X;NX

� �′
	 
′

(a 2p×Nx matrix),

where the p×1 vectors ~Φð0Þ
X;k and ~Φð1Þ

X;k correspond to the functions Φð0Þ
X;kðvÞ and Φð1Þ

X;kðvÞin Equation (22), respectively, evaluated (and normalized

to have unit norm) at the p grid points.

To compare the performance of different estimation methods, we report the estimation error, defined as ‖β̂1 − β1‖=
ffiffiffiffiffiffi
2p

p
, in which β̂1 denotes

an estimate of the “true” parameter β1 in model (2). In the Supporting Information, we also provide the estimation error, ‖β̂0 − β0‖, of the coeffi-

cient vector β0 associated with the error‐free covariates Zi. We consider the cases with the number of subjects n∈{100,200,400}, the number of

evaluation points p∈{50,200}, and the basis type {“A”,“B”} which specifies nonsparse (“A”) or sparse (“B”) basis for covariate model (22). We com-

pare the following three methods of estimating the coefficients.

• Cond.(LFPCA): The proposed conditional method that solves Equation (14) by Algorithm 1; the approach utilizes the LFPCA dimension reduc-

tion described in Section 2.1 and the SCAD penalization described in Section 2.3.

• Naive(LFPCA): A naive method ignoring the noise in ~Xi , where reduced model (5) is estimated by maximizing the SCAD‐penalized likelihood,

given a set of ~Xi from LFPCA reduction (3). For implementation, Algorithm 1 with the single “outer” loop (i.e., k=0 only) is utilized, in which

the vector ð1; Z′
i ;
~X ′
i Þ′ takes the part of GðkÞ

i throughout the whole algorithm (i.e., the update on GðkÞ
i is not performed).

• Naive(Variable‐wise): A naive approach ignoring the noise in Xi, in which model (2) is estimated by maximizing the elastic‐net (Zou & Hastie,

2005) penalized likelihood, given a set of Xi obtained from p number of separate variable‐wise regressions (i.e., LFPCA reduction 3 is not
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performed). The mixing parameter of the elastic‐net penalty is set to be 0.5, and its sparsity parameter is selected by maximizing a five‐fold

cross‐validated averaged predictive area under the receiver operating characteristic curve.

For the LFPCA‐based methods Cond.(LFPCA) and Naive(LFPCA), to determine appropriate values of NX and NU for representation (3), we

employ the approach suggested by Greven et al. (2010) that uses the proportion of variance explained as a “cut‐off” criterion. Throughout this

example, we use a cut‐off value that explains 85% of the observed longitudinal data variations. The elastic‐net regularization is often considered

as a more appealing method of regularization for highly correlated covariatesthan the SCAD regularization, which tends to select only one covar-

iate from a group of highly correlated covariates and ignore others, and this is why the elastic‐net regularization is employed for the method

Naive(Variable‐wise). We conduct simulations 100 times for each scenario.

The boxplots of the estimation errors for the methods Cond.(LFPCA), Naive(LFPCA), and Naive(Variable‐wise) are reported in Figures 1 and

2, for the settings “A” and “B,” respectively. In all scenarios, the proposed method, Cond.(LFPCA), of solving Equation (14) outperforms the

naive approaches ignoring the noise in covariates and results in a smaller average estimation error. In both settings “A” and “B,” when we

compare the two LFPCA‐based approaches, Cond.(LFPCA) and Naive(LFPCA), the benefit of employing the conditional method (that solves

Equation 14) becomes more evident, as the sample size n and the noise variance σ2 increase. Naive(Variable‐wise), which uses a set of

estimates of the intercepts and slopes obtained from p number of variable‐wise regressions as covariates, performs very poorly due to the high

correlations among the random intercepts and slopes. In the Supporting Information, we additionally provide an illustration for computational

efficiency of Algorithm 1 used in implementing Cond.(LFPCA) for this simulation example, in comparison with Naive(LFPCA) and

Naive(Variable‐wise).
3.2 | Simulation 2: Variable selection and estimation performance

We investigate the performance of variable selection for significant random intercepts/slopes and that of estimation accuracy, with a varying

intensity of noise level in covariates in a moderate dimensional setting. The LFPCA dimension reduction for Xi is not performed to distinguish

the effect of LFPCA from that of using the (SCAD‐penalized) measurement error models on the performance (see Remark 1 for the notation in
FIGURE 1 Boxplots of the estimation errors, obtained from 100 simulation runs, comparing (1) Cond.(LFPCA): the LFPCA‐based conditional
method accounting for the noise in covariates; (2) Naive(LFPCA): the LFPCA‐based naive method ignoring the noise in covariates; and(3)
Naive(Variable‐wise): the variable‐wise naive method ignoring the noise in covariates estimated via the elastic‐net penalization. Each panel
represents one of the combinations of n∈{100,200,400} and p∈{50,200}, as a function of a varying noise (in covariates) level σ2∈{0.25,0.5,1.0,1.5}



FIGURE 2 Boxplots of the estimation errors, obtained from 100 simulation runs, comparing (1) Cond.(LFPCA): the LFPCA‐based conditional
method accounting for the noise in covariates; (2) Naive(LFPCA): the LFPCA‐based naive method ignoring the noise in covariates; and (3)
Naive(Variable‐wise): the variable‐wise naive method ignoring the noise in covariates estimated via the elastic‐net penalization. Each panel
represents one of the combinations of n∈{100,200,400} and p∈{50,200}, as a function of a varying noise (in covariates) level σ2∈{0.25,0.5,1.0,1.5}
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this setting). We take the sample size to be n∈{250,500}, and the number of subject‐specific random intercepts and slopes from p independent

regions, 2p∈{10,20,30,40}. For each scenario, we conduct simulations 200 times.

For each simulation run, we generate Yi∈{0,1} on the basis of model (2), with β0=0 and β1 ¼ ð 1:5;1;0:5|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
3 active intercepts

; 0; …;0|fflfflfflffl{zfflfflfflffl}
p−3

; 0; …;0|fflfflfflffl{zfflfflfflffl}
p−3

; 0:5;1;1:5|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
3 active slopes

Þ′ ∈ R2p,

that is, there are six active random intercepts/slopes associated with Yi. The error‐free covariates Zi are not considered in this example. The 2p×1

vector of random effect vectors Xi ¼ ðXð0Þ′
i ;Xð1Þ′

i Þ′, with Xð0Þ
i ¼D Xð1Þ

i ∈ Rp are generated from the multivariate normal distribution with the identity

covariance ΣX=I2p. The measurement error Uij ∈ Rp is generated from Uij ∼ Nð0; σ2∑UÞ, with a p×p auto‐regressive correlation matrix ΣU where its

(a,b)th entry is given as 0.5|a−b| for any a,b∈{1,…,p}. The intensity of the covariate noise Uij is controlled by σ2∈{0.25,0.5,1,1.5}. The longitudinal vec-

torsWij ∈ Rp are generated on the basis of model (1) with Ji=4, for each i=1,…,n. The visit time points tij are generated from Unif(0,Ji), sorted in an

increasing order, and then shifted and scaled to have mean 0 and unit variance. Given each set of data, MLE was used for estimating the noise

variance σ2∑U associated with Xi, assuming the “unstructured” correlation structure on ΣU and that Xi are uncorrelated. We consider the following

four approaches for fitting model (2).

• Cond.(SCAD): The proposed conditional method that solves Equation (14) by Algorithm 1 (see Remark 1 for the notation) using the SCAD

penalization.

• Cond.(Full): The conditional method that solves Equation (11) by the Newton–Raphson iteration (13), without employing any penalization

(“Full”).

• Naive(SCAD): A naive method ignoring the noise in Xi, where model (2) is estimated by maximizing the SCAD‐penalized likelihood, given a set

of Xi obtained from MLE of model (1). For implementation, Algorithm 1 with the single “outer” loop (i.e., k=0 only) is utilized, in which the vector

ð1;X′
i Þ′ takes the part of GðkÞ

i throughout the whole algorithm (i.e., the update on GðkÞ
i is not performed).

• Naive(Full): A naive method ignoring the noise in Xi, where model (2) is estimated by maximizing the likelihood, given a set of Xi

obtained from MLE of model (1), implemented by the standard GLM routine implemented in R (R Core Team, 2019), without penalization

(“Full”).
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First, in Figure 3, for the 2p∈{30,40} cases, we compare the results of the variable selection performance of the two approaches that incorpo-

rated a simultaneous covariate selection procedure: Cond.(SCAD) and Naive(SCAD). We omitted the results for 2p∈{10,20}, as they were qualita-

tively similar to their higher dimensional counterparts 2p∈{30,40}. In Figure 3, we report the proportions of correctly selecting the relevant random

effects (i.e., “correct signals”) out of the six true nonzeros, and those of correctly unselecting the irrelevant random effects (i.e., “correct zeros”) out

of the 2p−6 true zeros. The naive estimators would be consistent to a vector that is different from the true β1 because of the noise in covariates

(Liang & Li, 2009). Therefore, ignoring the noise in covariate would tend to falsely classify the irrelevant coefficients as significant ones. In Figure 3,

the results exactly demonstrate this point, indicating that ignoring the covariate noise causes errors in correctly unselecting the true zeros,

resulting in selection of spurious covariates and a more complex model. In terms correctly identifying the “signal” random effects, the proposed

method also outperforms the naive method in all scenarios. Overall, the method incorporating the covariate errors outperforms the naive method.

Second, we compare the estimation accuracy of the four methods, on the basis of the estimation error defined as ‖β̂1 − β1‖=
ffiffiffiffiffiffi
2p

p
, in which β̂1

denotes an estimate of β1. Figure 4 reports the averaged estimation error over the 200 simulation runs, for each combination of 2p∈{10,20,30,40}

(displayed from top to bottom) and n∈{250,500} (displayed from left to right), with a varying noise level in covariates, σ2∈{0.25,0.5,1,1.5}. The level

of the noise in covariates certainly affects the estimation performance of all methods, as the performance generally deteriorates with an increasing

covariate measurement noise σ2. However, in all cases, the method Cond.(SCAD) outperforms both of the naive approaches. Although the

unpenalized method (Cond.(Full)) performs at a similar level as the penalized one (Cond.(SCAD)) for n=500, it suffers from a substantial instability

in larger 2p settings given a smaller sample size, for example, 2p∈{30,40} with n=250. In particular, the unpenalized method (Cond.(Full)) is often

outperformed by the naive approaches (Naive.(SCAD) and Naive.(Full)). On the other hand, Cond.(SCAD) outperforms the naive approaches in all

cases.
4 | APPLICATION

In this section, the method is applied to the ADNI data to identify biomarkers for dementia transition in MCI participants. The data were

downloaded from the ADNI database (http://adni.loni.usc.edu). The initial phase (ADNI‐I) recruited 800 participants, including approximately

200 healthy controls, 400 patients with late MCI, and 200 patients clinically diagnosed with probable AD over 50 sites across the United States

and Canada and followed up at 6‐ to 12‐month intervals for 2–3 years. ADNI has been followed by ADNI‐GO and ADNI‐2 for existing participants
FIGURE 3 The proportions of correctly unselected (C. unselected) “zero” covariates and those of correctly selected (C.selected) “signal”
covariates, averaged over 200 replications, comparing Cond.(SCAD) and Naive(SCAD), with a varying noise (in covariates) level σ2 in
{0.25,0.5,1.0,1.5}. The top (bottom) row corresponds to the 2p=30(2p=40) cases; the left (right) two columns corresponds to the n=250 (n=500)
cases. The larger values indicate superior performance



FIGURE 4 The estimation errors averaged over 200 simulation runs, comparing the methods Cond.(SCAD), Naive(SCAD), Cond.(Full), and
Naive(Full), for each covariate dimension 2p in {10,20,30,40} (from top to bottom), with a varying noise (in covariates) level σ2 in
{0.25,0.5,1.0,1.5}; the left (right) panels correspond to n=250 (n=500) cases
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and enrolled additional individuals, including early MCI. To be classified as MCI in ADNI, a subject needed an inclusive Mini‐Mental State Exam-

ination score of between 24 and 30, subjective memory complaint, objective evidence of impaired memory calculated by scores of the Wechsler

Memory Scale Logical Memory II adjusted for education, a score of 0.5 on the Global Clinical Dementia Rating, absence of significant confounding

conditions such as current major depression, normal or near normal daily activities, and absence of clinical dementia.

ADNI used 1.5‐T and 3.0 MP‐RAGE T1‐weighted MR images that were later preprocessed and corrected for non‐linearity via “GradWarp.” The

scans were implemented using a standardized ADNI protocol adjusted for use at each specific collection site and then underwent scaling and vet-

ting to meet quality control criteria. Cross‐sectional image processing was performed using FreeSurfer Version 4.3 by researchers at UCSF group

(http://adni.loni.usc.edu/methods/mri‐analysis/). Region of interest (ROI)‐specific cortical thickness measures were extracted from the automated

FreeSurfer 5.1 anatomical parcellation using the Desikan–Killiany atlas (Desikan et al., 2006); there were 68 ROIs (34 each on the left and right

hemispheres), in which the longitudinal cortical thickness measures were collected. For internal consistency, we focused on subjects with 1.5‐T

magnetic resonance imaging scans and diagnosed as MCI at the screening. We excluded participants who converted back to cognitive normal

and who had images that did not pass the quality check, yielding 339 subjects. Out of the 339 subjects, we included n=221 patients who had
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at least two visits during 1–4 years. The 118 subjects who were not followed up for at least 1 year were excluded from the analysis. Of the 221

subjects analysed, 101 subjects were translated to dementia before their last available records, whereas 120 subjects remained as MCI.

The dementia transition was the primary outcome Yi of the study, coded as 1 for “demented” and 0 for “not‐demented.” Age and gender were

considered as “error‐free” covariates Zi. The average age was 73.89 with SD of 7.12, and about 40% of the subjects were female. Under model (1),

we estimate the subject‐specific random intercepts Xð0Þ
i ∈ R68 (i.e., the baseline cortical thickness) and the slopes Xð1Þ

i ∈ R68 (i.e., the change rates)

associated with the cortical thickness of 68 ROIs, and we collectively denoted them as Xi ¼ Xð0Þ′
i ;Xð1Þ′

i

� �′
∈ R136. These subject‐specific random

effects Xi associated with the ROIs were considered as potential biomarkers for dementia transition, and model (2) was estimated. For estimation

of joint models (1) and (2), we used three methods, that is, Cond.(LFPCA), Naive(LFPCA), and Naive(Variable‐wise), described in Section 3.1. For

Cond.(LFPCA) and Naive(LFPCA), the numbers of the LFPC components, NX and NU, of LFPC representation (3), were chosen to explain 75% of

the total variability of the longitudinal data, resulting in NX=12 for representing the random effect covariates Xi, and NU=2 for representing the

noise Uij. Beyond the 75% cut‐off, the estimated eigenvalues of the LFPC model were negligibly small.

Figures 5 and 6 display the estimated regression coefficients associated with the random intercepts Xð0Þ
i and the random slopes Xð1Þ

i , respec-

tively. To identify significant biomarkers for the dementia progression, we computed 95% bootstrap confidence intervals for the coefficient

estimates on the basis of 500 bootstrap replications. For each bootstrap replication, we sampled with replacement n(=221) quadruplets

{(Yi,Wi,Zi,ti),i=1,…,221}, each time fitting regression model (2) on the basis of the resampled quadruplets; for Cond.(LFPCA) and Naive(LFPCA),

we use LFPC dimension reduction model (3) (with a 75% variance cut‐off for the values NX and NU) to represent covariate model (1); for
FIGURE 5 The coefficient estimates associated with the random intercepts that correspond to the 34 regions of interest (ROIs) of the left
hemisphere (in the left panel) and of the right hemisphere (in the right panel), comparing Cond.(LFPCA) and Naive(Variable‐wise), with 95%
confidence intervals obtained from 500 bootstrap replications. Estimated significant ROIs are marked with an asterisk on the right



FIGURE 6 The coefficient estimates associated with the random slopes that correspond to the 34 regions of interest (ROIs) of the left
hemisphere (in the left panel) and of the right hemisphere (in the right panel), comparing Cond.(LFPCA) and Naive(Variable‐wise), with 95%
confidence intervals obtained from 500 bootstrap replications. Estimated significant ROIs are marked with an asterisk on the right
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Naive(Variable‐wise), we estimate covariate model (1) ROI‐wise, using an ROI‐specific intercept and slope model without performing LFPC

dimension reduction. We note that the estimated coefficients (and the associated confidence intervals) obtained from Naive(LFPCA) were rel-

atively very similar to the estimates obtained from Cond.(LFPCA), in comparison with the difference in the estimates between Cond.(LFPCA)

and Naive(Variable‐wise). Hence, for clarity of presentation, we did not display the estimates from Naive(LFPCA) in Figures 5 and 6. The coef-

ficient estimates from Cond.(LFPCA) are marked with the red triangles, and those obtained from Naive(Variable‐wise) are marked with the blue

circles.

Cond.(LFPCA) and Naive(LFPCA) (although not displayed in the figures) identified 46 common random effects as significant covariates, in

which the associated 95% bootstrap confidence intervals did not contain zeros. Cond.(LFPCA) that accounts for the errors in covariates addition-

ally identified the baseline value (the intercept) of right lateral orbitofrontal (̂β1 ¼ −0:30), the change rates (the slopes) of superior temporal (−0.25),

right fusiform (−0.33), and right lateral occipital (−0.23), as significant covariates, giving a total of 50 significant covariates. Naive(LFPCA) addition-

ally identified the change rate of left temporal pole (−0.67) as a significant covariate, giving a total of 47 significant covariates. On the other hand,

Naive(Variable‐wise) exhibited a large variability in the coefficient estimates, due to the high correlations among the random effects. The associ-

ated 95% bootstrap confidence intervals were much larger than those of Cond.(LFPCA) and Naive(LFPCA) and did not identify any covariates as

significant.

Most of the significant coefficients associated with the intercepts were negative, which indicates that thinner cortical thickness in the identi-

fied areas is associated with a higher chance of dementia transition. Also, negative estimates associated with the slopes imply that faster cortical

thinning in the identified ROIs is associated with dementia transition.



14 of 15 PARK AND LEE
5 | DISCUSSION

In this paper, we focused on a special case where the covariates are subject‐specific random intercepts and slopes from a longitudinal mixed

effects model. However, the method can be extended to a more general random effects model with minor modification. Also, by utilizing the

LFPCA and a regularized estimation via CD, the proposed method could handle high‐dimensional correlated random effects effectively.

Simulations showed that the proposed approach outperforms the naive approaches that ignore the errors associated with the random effect

covariates. A robust majorization employed in Algorithm 1 was critical in the implementation of the method, because directly utilizing a

CD/Newton‐Raphson‐type algorithm (particularly for a high dimension) is prone to instability in the sequence of iterations (13) and (16) due to

the substantial non‐linearity (with respect to β) present in conditional‐score equation (11), as discussed in Section 2.3. We note that multiple solu-

tions of the parameters might exist (Carroll et al., 2006), and in such cases, the estimates can be sensitive to the choice of initialization. The naive

estimate Naive(LFPCA) of the model is often a reasonable initial estimate. A further research direction for the proposed method includes incor-

poration of multiple functional covariates and prediction based on the estimated models.

The application to ADNI data revealed that intercepts in the right entorhinal and bilateral lateral orbitofrontal thickness are highly associated

with dementia transition. Particularly, many previous studies have reported that those with entorhinal cortical thickness (e.g., ; Devanand et al.,

2012; Lee et al., 2016) and bilateral lateral orbitofrontal cortical thickness are highly associated with having MCI than are cognitively normal peo-

ple (Zhao et al., 2015). In this ADNI sample, the slopes of most ROIs had negative coefficient estimates. This reflects that neurodegeneration

occurs in many of cortical areas during the follow‐up, and MCI participants with more neurodegeneration transitioned to dementia. The results

suggest that taking account for measurement errors and high correlations between random effect estimates improved estimation and yielded

meaningful results that are also consistent with literature.
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