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ABSTRACT
This article focuses on the problem of modeling and estimating interaction e!ects between covariates and
a continuous treatment variable on an outcome, using a single-index regression. The primary motivation
is to estimate an optimal individualized dose rule and individualized treatment e!ects. To model possibly
nonlinear interaction e!ects between the patients’ covariates and a continuous treatment variable, we
employ a two-dimensional penalized spline regression on an index-treatment domain, where the index
is de"ned as a linear projection of the covariates. The method is illustrated using two applications as
well as simulation experiments. A unique contribution of this work is in the parsimonious (single-index)
parameterization speci"cally de"ned for the interaction e!ect term, that can be used to assess the treatment
bene"t. Supplemental materials for this article are available online.
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1. Introduction

In precision medicine, a primary goal is to characterize the indi-
viduals’ heterogeneity in treatment responses so that individual-
speci!c treatment decisions can be made (Murphy 2003; Robins
2004). Most work on developing methods for individualized
treatment decisions has focused on a !nite number of treatment
options. The focus on this article is to develop individualized
treatment decision methodology in the realm of a continuous
treatment. Speci!cally, we consider a semiparametric regression
approach for developing optimal individualized dosing rules
based on baseline patient characteristics. O"en in clinical prac-
tice, the maximum dose that a patient can tolerate is the most
e#ective one, however, there are situations where this is not the
case. In the example section, we present a study of warfarin (an
anticoagulant), where too high doses lead to severe bleeding and
thus the highest dose is not the optimal dose. In !nding the
optimal dose, there is an essential nonmonotone and nonlinear
relationship that needs to be accounted for. A similar case is with
insulin for controlling blood glucose levels.

To establish notation, let X = (X1, . . . , Xp)! ∈ X be the
set of baseline covariates, Y ∈ R be the outcome variable, and
A ∈ A denote the dose. Let Y∗(a) be the potential outcome
when a dose level a ∈ A is given. Throughout, we assume: (i)
consistency, that is, Y =

∫
A δ(A = a)Y∗(a)da, where δ(·) is the

Dirac delta function; (ii) no unmeasured confoundedness, that
is, {Y∗(a), a ∈ A} is conditionally independent of A given X;
(iii) positivity, that is, p(A = a|X = x) ≥ c, for all a ∈ A, x ∈ X ,
for some c > 0 (where p(a|x) is the conditional density of A = a
given X = x), which are standard assumptions adopted in the
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causal inference literature (Gill and Robins 2001). Without loss
of generality, we assume that a larger value of the outcome Y is
better. The goal is then to !nd an optimal individualized dose
rule f : X %→ A such that for a patient with covariate X, the
dose assignment A = f (X) maximizes the expected response,
the so-called value function, V(f ) = E[Y∗(f (X))], that is,

V(f ) = E[E[Y|A = f (X), X]] (1)

which holds and can be empirically approximated under the
above three assumptions. In settings in which the treatment can
be administered at continuous doses (i.e., when A is an interval),
Chen, Zeng, and Kosorok (2016) proposed to optimize the
individualized dosing rule f by maximizing a local approxima-
tion of the value function (1), optimized under the framework
of outcome weighted learning (Zhao et al. 2012). Laber and
Zhao (2015) proposed a tree-based decision rule for treatment
assignment with minimal impurity dividing patients into sub-
groups with di#erent discretized doses. Kallus and Zhou (2018)
developed an inverse propensity weighted estimator of Equation
(1) for continuous treatments with the doubly robust property
(Dudík et al. 2014), and recently, kernel-assisted learning with
linear dimension reduction (Zhou, Zhu, and Zeng 2020; Zhu
et al. 2020) for direct optimization of Equation (1) have been
developed. However, implementation of these approaches for
general exponential family distributions is not straightforward
and has not been accomplished. In this article, we consider a
regression-based approach to optimizing f that uses a semipara-
metric regression model for E[Y|A, X]. There is also extensive
literature on multi-armed bandit (e.g., Lattimore and Szepesvari

© 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America

https://doi.org/10.1080/10618600.2021.1923521
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2021.1923521&domain=pdf&date_stamp=2021-06-17
mailto:syhyunpark@gmail.com
http://www.tandfonline.com/r/JCGS


2 H. PARK ET AL.

2019) problems in the context of reinforcement learning (e.g.,
Kaelbling, Littman, and Moore 1996), incorporating context
(i.e., feature X ∈ X ) (see, e.g., Lu, Pal, and Pal 2010; Perchet and
Rigollet 2013; Slivkins 2014; Jun et al. 2017; Li, Lu, and Zhou
2017; Kveton et al. 2020; Chen, Lu, and Song 2021) for mak-
ing a sequential decision that minimizes the notion of cumu-
lative regret, with relatively fewer works on contextual ban-
dits with continuous actions (see, e.g., Kleinberg, Slivkins, and
Upfal 2019; Krishnamurthy et al. 2020; Majzoubi et al. 2020).
However, these works are focused on optimizing online per-
formance (addressing the exploration issue) and considerably
di#erent from personalized dose-!nding focused on a single
stage with feature X. Kennedy et al. (2017) considered a method
for estimating the average dose e#ect allowing for $exible doubly
robust covariate adjustment, but the method is not intended
for optimal dose !nding for individual patients. For multi-stage
personalized dose-!nding, Rich, Moodie, and Stephens (2014)
proposed adaptive strategies, and more recently Schulz and
Moodie (2021) developed a doubly robust estimation approach
based on a linear model. All these approaches are limited by the
stringent linear model assumptions for the heterogeneous dose
e#ects.

While the methods of directly optimizing the value func-
tion (1), including the outcome weighted learning of Chen,
Zeng, and Kosorok (2016) and the tree-based method of Laber
and Zhao (2015), are highly appealing, the proposed semi-
parametric regression modeling has the advantage of being easy
to implement and readily generalizable to an exponential family
response.

It is straightforward to see that, given X, the optimal dose
fopt(X) (i.e., that which maximizes the value function (1)) is

fopt(X) = argmax
a∈A

m(a, X), (2)

where m(a, X) = E[Y|A = a, X]. If we estimate m(a, X)

with m̂(a, X), then the optimal rule fopt in Equation (2) can be
approximated as

f̂ (X) = argmax
a∈A

m̂(a, X). (3)

Methodologies for optimizing individualized treatment rules
f in the precision medicine literature are developed predomi-
nantly for the cases in which the treatment variable A is binary
or discrete-valued. Regression-based methodologies !rst esti-
mate the treatment a-speci!c mean response functions m(a, X)

and then obtain a treatment decision rule, that is, the le"-
hand side of (3) (e.g., see Qian and Murphy 2011; Zhang et al.
2012; Gunter, Zhu, and Murphy 2011; Lu, Zhang, and Zeng
2013; Park et al. 2020) given X. In particular, Qian and Mur-
phy (2011) showed that the optimal individualized treatment
rule (2) depends only on the interaction between treatment
A and covariates X, and not on the main e#ects of X in the
mean models m(a, X). For regression-based methodologies, a
successful estimation of the function fopt in Equation (2) boils
down to e%ciently estimating the A-by-X interaction e#ects
on the treatment response. In this article, we consider a semi-
parametric model that is useful for estimating such interactions
in the case where A is a continuous dose variable.

2. Models

Our goal is to provide an interpretable and $exible approach to
modeling the A-by-X interaction e#ects on Y . To achieve this
goal, we consider the following additive single-index model:

E[Y|X, A] = µ(X) + g(β!X, A) (4)
where µ(X) represents an unspeci!ed main e#ect of X, and
g(β!X, A) models the A-by-X interaction e#ects. Here, g(·, ·)
is an unspeci!ed smooth two-dimensional surface link function
of the variable A and a single index β!X. We shall call model
(4) a single-index model with a surface-link (SIMSL). We restrict
β ∈ # := {β = (β1, . . . , βp)! ∈ Rp : ‖β‖2 = 1, β1 > 0}, as β

in Equation (4) is only identi!able up to a scale constant without
further constraint, due to the unspeci!ed nature of g.

Without loss of generality, we assume E[µ(X)] = 0 and
E[g(β!X, A)] = 0 (where the expectation is with respect to X
and A), that is, each of the additive components in model (4)
has mean 0, and that these components have !nite variances, as
typically assumed in generalized additive models (GAM; Hastie
and Tibshirani 1999). That is, let H1 and H(β)

2 (for a !xed β ∈
#) denote the L2 spaces of measurable functions µ(X) on X and
measurable functions g(β!X, A) on (β!X, A), respectively, and
we assume µ ∈ H1 and g ∈ H(β)

2 .
Due to the unspeci!ed nature of µ and g (and that X is

involved in both µ and g), model (4) is not identi!able without
further constraints. We will constrain the smooth function g ∈
H(β)

2 to satisfy

E[g(β!X, A)|X] = 0, a.s. (X) X ∈ X , β ∈ Rp, (5)
which acts as an identi!ability condition of model (4).

Applying the constraint (5) to the function g in Equation
(4) essentially reparameterizes the model (4), by replacing
g(β!X, A) with g0(β!X, A) = g(β!X, A) − E[g(β!X, A)|X],
and µ(X) with µ0(X) = µ(X) + E[g(β!X, A)|X]. This
yields an equivalent model of Equation (4), E[Y|X, A] =
µ0(X) + g0(β!X, A), where the term g0(β!X, A) satis!es
the identi!ability condition (5). Since any arbitrary (µ, g) in
Equation (4) can be rearranged to give such reparameterized
components (µ0, g0), without loss of generality, we will
represent (µ0, g0) as (µ, g) subject to Equation (5).

Under the SIMSL (4) (subject to constraint (5)), the opti-
mal individualized dose rule, fopt, is speci!ed as: fopt(X) =
argmax

a∈A
g(β!X, a), which does not involve the component µ.

Therefore, in terms of estimating fopt in Equation (2), our mod-
eling focus is on estimating (g, β) in Equation (4).

Using the constrained least-square framework, the right-
hand side of Equation (4), subject to constraint (5), can be
optimized by solving:
(µ∗, g∗, β∗) = argmin

µ∈H1,g∈H(β)
2 ,β∈#

E
[
(Y − µ(X) − g

(
β!X, A))2]

subject to E
[

g(β!X, A)|X
]

= 0.
(6)

Constraint (5) ensures that E
[
µ(X)g(β!X, A)

]
= E

[
µ(X)

E[g(β!X, A)|X]
]

= 0 (in which we apply the iterated expecta-
tion rule to condition on X), which implies the orthogonality,

µ(X) ⊥ g(β!X, A), (7)
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in L2. The orthogonality (7) implies that the optimization for
µ∗ and that for (g∗, β∗) on the le"-hand side of Equation (6)
can be performed separately, without iterating between the two
optimizations. Speci!cally, we can solve for the X main e#ect
component

µ∗ = argmin
µ∈H1

E
[
(Y − µ(X))2], (8)

and separately solve for the A-by-X interaction e#ect compo-
nent

(g∗, β∗) = argmin
g∈H(β)

2 ,β∈#

E
[
(Y − g

(
β!X, A))2]

subject to E
[
g(β!X, A)|X

]
= 0,

(9)

without alternating between the two optimization procedures.
We can !t fopt by: f̂ (X) = argmax

a∈A
ĝ∗(β̂

∗!X, a), where (ĝ∗, β̂∗)

denotes an estimate of (g∗, β∗) in Equation (9). This approach
using optimization (9) is appealing, because, due to orthog-
onality (7), misspeci!cation of the functional form for µ in
Equation (6) does not a#ect speci!cation of (g∗, β∗) on the le"-
hand side of Equation (9). If primary interest is in estimating
fopt in Equation (2), then using f̂ based on optimization (9)
circumvents the need to estimate the term µ in (4), obviating
the need to specify its form and thus avoiding the issue of model
misspeci!cation on the X main e#ect. The equivalence between
(g∗, β∗) on the le"-hand side of Equation (9) and (g, β) in
Equation (4) is given in Proposition 1 in Section 4 (in the context
where Y follows an exponential family response).

Since our primary focus is on estimating fopt, we focus on
solving Equation (9). However, we also note that modeling the
term µ in Equation (4) can generally improve the performance
of the estimator of (g, β), as discussed in supplementary mate-
rials Section C.1. For each !xed β , the term g(β!X, A) depends
the covariates X ∈ X only through the one-dimensional pro-
jection β!X. Therefore, for each !xed β , the distribution of
g(β!X, A)|X is equal to that for g(β!X, A)|β!X, which implies
E

[
g(β!X, A)|X

]
= E

[
g(β!X, A)|β!X

]
, for each !xed β .

Then, for each !xed β ∈ #, the following constraint on g ∈
H(β)

2 ,

E
[

g(β!X, A)|β!X
]

= 0, X ∈ X , (10)

is a su%cient condition for the orthogonality constraint (5).
Thus, for each !xed β , the constraint (5) can be simpli!ed to
(10). The following iterative procedure will be used to solve
Equation (9):

1. For !xed β , optimize the smooth g(·, ·) by solving

argmin
g∈H(β)

2

E
[
(Y − g

(
β!X, A))2], (11)

subject to the constraint (10).
2. For !xed g, optimize the coe%cient β ∈ # by minimizing the

squared error criterion of Equation (11).
3. Iterate steps 1 and 2 until convergence with β ∈ #.

The data version of optimizing (g, β) can be derived as an
empirical counterpart of the iterative procedure given above.
Details on implementing this algorithm are given below.

3. Estimation

3.1. Representation of Link Surface

Suppose we have observed data (Yi, Ai, Xi) (i = 1, . . . , n). For
each candidate vector β ∈ #, let

ui = u(β)
i = β!Xi (i = 1, . . . , n),

where (on the le"-hand side), for the notational simplicity, we
suppress the dependence of the linear predictor u(β) ∈ R on the
candidate vector β .

Eilers and Marx (2003) used tensor products of B-splines
(de Boor 2001) to represent two-dimensional surfaces, which
they termed tensor product P-splines, with separate di#erence
penalties applied to the coe%cients of the B-splines along the
covariate axes. Although alternative nonparametric methods
could also be used to estimate the smooth function g ∈ H(β)

2
given each coe%cient vector β in model (4), in this article we
focus on one smoother, the tensor-product P-splines, for the
ease of presentation.

Speci!cally, for each u = β!X, to represent the two-
dimensional function g(u, A) in (11), we consider the tensor
product of the two sets of univariate cubic B-spline basis
functions, say B and B̌, with N (and Ň) B-spline knots for the
basis functions that are placed along the u (and A) axis. The
number of knots N (and Ň) is chosen to be large, that is, to
allow the surface much $exibility. Associated with the basis
representation de!ned by the marginal basis function B (resp.,
B̌) is an N×N (resp., Ň×Ň) roughness penalty matrix, which we
denote by P (and P̌). The penalty matrix P (and P̌) can be easily
constructed, for example, based on a second-order di#erence
matrix (see, e.g., Eilers and Marx 2003).

For each !xed ui = β!Xi (i = 1, . . . , n), let us write the n×N
(and n × Ň) B-spline evaluation matrix B (and B̌), in which its
ith row is Bi = B(ui)! (and B̌i = B̌(Ai)!). Given a knot grid,
a $exible surface can be approximated (Marx 2015) at n points
(ui, Ai) (i = 1, . . . , n):

g(ui, Ai) =
N∑

r=1

Ň∑

s=1
Br(ui)B̌s(Ai)γrs = (Bi⊗B̌i)θ (i = 1, . . . , n),

(12)
where the vector θ =

(
γ11, . . . , γ1Ň ; . . . ; γN1, . . . , γNŇ

)! ∈
RNŇ corresponds to an unknown (vectorized) coe%cient vector
of the tensor product representation of g, and ⊗ represents
the usual Kronecker product. Equation (12) can be compactly
written as:

vec
{

g(ui, Ai)
}

= g(un×1, An×1) = Dθ , (13)

where

D = B!B̌ =
(

B ⊗ 1!
Ň

)
,

(
1!

N ⊗ B̌
)

, (14)

in which the symbol , denotes element-wise multiplication
of matrices. In Wood (2017), the symbol ! in Equation (14)
is called the row-wise Kronecker product, which results in an
n × NŇ tensor product design matrix D from the two marginal
design matrices B and B̌.

Similarly, the roughness penalty matrices associated with the
tensor product representation (12) can be constructed from
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the roughness penalty matrices P and P̌ associated with the
univariate (marginal) basis matrices B and B̌, and are given by
P = P ⊗ IŇ and P̌ = IN ⊗ P̌, for the axis directions u and A,
respectively. Here, I denotes the identity matrix, and both P and
P̌ are square matrices with dimension NŇ.

We now need to impose the constraint (10) on the two-
dimensional smooth function g under the tensor product rep-
resentation (13). For each !xed β , the constraint (10) on g
amounts to excluding the main e#ect of u = β!X from
the function g. We deal with this by a reparameterization of
the representation (13) for g. Consider the following sum-to-
zero (over the n observed values) constraint for the marginal
function of A:

1!B̌γ̌ = 0, (15)

for any arbitrary γ̌ ∈ RŇ , where 1 is a length n vector of 1’s.
With constraint (15), the linear smoother associated with the
basis matrix B̌ cannot reproduce constant functions (Hastie and
Tibshirani 1999). That is, the linear constraint (15) removes the
span of constant functions from the span of the marginal basis
matrix B̌ associated with A. Constraint (15) results in a tensor
product basis matrix, D = B!B̌ in (13), that will not include the
main e#ect of u that results from the product of the marginal
basis matrix B with the constant function in the span of the
other marginal basis matrix B̌. Therefore, the resultant !t, under
representation (13) (subject to Equation (15)) of the smooth
function g, excludes the main e#ect of u. See Section 5.6 of Wood
(2017) for some more details.

We impose the linear constraint (15) on the matrix B̌, and
consequently, the resulting basis matrix D of representation of
g in Equation (13) becomes independent of the basis associated
with the main e#ect of u. Imposition of such a linear constraint
(15) on a basis matrix is routine. The key is to !nd an (orthog-
onal) basis for the null space of the constraint (15), and then
absorb the constraint into the basis construction (14). To be
speci!c, we can create a Ň × (Ň −1) matrix, which we denote as
Z, such that, given any arbitrary coe%cient vector γ̌ 0 ∈ RŇ−1,
if we set γ̌ = Zγ̌ 0, then we have 1!B̌γ̌ = 0, automatically
satisfying the constraint (15). Such a matrix Z is constructed
using a QR decomposition of B̌!1. Then we can reparameterize
the marginal function of A by setting its model matrix to B̌ ←
B̌Z (and its penalty matrix to P̌ ← Z!P̌Z). From this point
forward, for notational simplicity, we rede!ne the matrix B̌ (and
P̌) to be this reparameterized, constrained marginal basis matrix
(and the reparameterized constrained penalty matrix).

This sum-to-zero reparameterization of the marginal
basis matrix B̌ of A to satisfy Equation (15) creates a term
vec

{
g(ui, Ai)

}
∈ Rn in Equation (13) that speci!es such a pure

A-by-X interaction (plus the A main e#ect) component, that
is also orthogonal to the X main e#ect. In Wood (2006), this
reparameterization approach is used to create an analysis of vari-
ance (ANOVA) decomposition of a smooth function of several
variables. In this article, we use this same reparameterization
to orthogonalize the interaction e#ect component g(β!X, A)

from the main e#ect, and to allow an unspeci!ed/misspeci!ed
main e#ect for X in the estimation of the SIMSL (4). Provided
that the orthogonality constraint (i.e., Equation (15)) issue is

addressed, the interaction e#ect term g(β!X, A) of model (4),
for each !xed β , can be represented using penalized regression
splines and estimated based on penalized least squares, which
we describe next.

3.2. Estimation Algorithm

We de!ne the criterion function for estimating (g, β) in the
SIMSL (4)

Q(θ , β) = ‖Yn×1 − g(Xβ , An×1)‖2 + λ‖Pθ‖2 + λ̌‖P̌θ‖2

= ‖Yn×1 − Dθ‖2 + λ‖Pθ‖2 + λ̌‖P̌θ‖2

(16)
subject to the constraint that the function g(·, ·) empirically
satis!es Equations (5). In Equation (16), X is an n × p matrix
whose ith row is X!

i . Since both θ and β are unknown in
Equation (16), estimation of θ and β is conducted iteratively.
We describe below the estimation procedure.

1. For a !xed estimate of β (that de!nes the linear predictor u),
minimize the following criterion function over θ ∈ RNŇ ,

‖Yn×1 − Dθ‖2 + λ‖Pθ‖2 + λ̌‖P̌θ‖2, (17)

where D is given by Equation (14). Given tuning parameters
(λ, λ̌), the minimizer θ̂ of (17) is:

θ̂ =
(

D!D + λP!P + λ̌P̌!P̌
)−1

D!Yn×1.

2. For a !xed estimate of the surface g (i.e., given θ), perform a
!rst-order Taylor approximation of g(Xβ , An×1) in Equation
(16) with respect to β , around the current estimate, say,
β̃ ∈ #,

g(Xβ , An×1) ≈ g(Xβ̃ , An×1)+diag
{

ġ∂1(Xβ̃ , An×1)
}

X(β−β̃),
(18)

where ġ∂1(u, a) denotes the partial !rst derivative of g(u, a)

with respect to u, that is, ∂g(u,a)
∂u . Using (18), we approximate

the quadratic loss in Equation (16) by (as a function of β

given θ)
∥∥∥Yn×1 − g(Xβ̃ , An×1) − diag

{
ġ∂1(Xβ̃ , An×1)

}
X(β − β̃)

∥∥∥
2

=
∥∥∥Yn×1 − g(Xβ̃ , An×1) + diag

{
ġ∂1(Xβ̃ , An×1)

}
Xβ̃

− diag
{

ġ∂1(Xβ̃ , An×1)
}

Xβ
∥∥∥

2

=
∥∥Y∗

n×1 − X∗β
∥∥2 ,

(19)
where Y∗

n×1 = Yn×1−g(Xβ̃ , An×1)+diag
{

ġ∂1(Xβ̃ , An×1)
}

Xβ̃ ,
and X∗ = diag

{
ġ∂1(Xβ̃ , An×1)

}
X. The minimizer β̂ of

Equation (19) is

β̂ =
(

X∗!X∗
)−1

X∗!Y∗
n×1. (20)

Then we scale β̂ to have unit L2 norm, that is, β̂/‖β̂‖, and
enforce a positive !rst element to restrict the estimate of β to
be in #.
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These two steps can be iterated until convergence to obtain an
estimate of (g∗, β∗) in Equation (9), which we denote as (ĝ∗, β̂∗).
For Step 1, the tuning parameters (λ, λ̌) can be automatically
selected, for example, by the generalized cross-validation (GCV)
or the restricted maximum likelihood (REML) methods. In
this article, we use REML for the simulation examples and the
applications.

Finally, for model hierarchy, it is common practice to include
all lower order e#ects of variables if there are higher-order inter-
action terms including that set of variables. Once convergence of
the estimate β̂ is reached in the above algorithm and the single-
index β!X in the term g(β!X, A) of model (4) is estimated, we
recommend !tting one !nal (unconstrained) smooth function
g of A and β̂!X, without enforcing the constraint (15) on g.
Given the !nal estimate of β , the unconstrained !nal surface-
link g(·, ·) retains the main e#ect of β!X and preserves model
hierarchy.

4. Generalized Single-Index Models for Optimizing
Dose Rules

The proposed approach to optimizing the heterogeneous dose
e#ect (i.e., the X-by-A interaction e#ect) term of model (4) can
be extended to a more general setting in which the response
Y follows an exponential family distribution. Given (X, A), we
assume an additive single-index model (4)

m(X, A) = E[Y|X, A] = µ0(X) + g0(β
!
0 X, A), (21)

(in which subscript (0) is used to indicate the “true” value), and
the variance of Y is determined based on the exponential family
density of the form:

exp
{[

Yh(m(X, A)) − b(h(m(X, A)))
]
/a(φ) + c(Y , φ)

}
, (22)

where h is the canonical link function associated with the
assumed distribution of Y , and the functions a, b and c
are distribution-speci!c known functions. For model iden-
ti!ability, we assume β0 ∈ #, and g0 ∈ H(β0)

2 to satisfy
E[g0(β!

0 X, A)|X] = 0. The dispersion parameter φ > 0 in
Equation (22) takes on a !xed, known value in some families
(e.g., φ = 1, in Bernoulli and Poisson), while in other families,
it is an unknown parameter (e.g., in Gaussian).

We estimate (g0, β0) in model (21) by using the following
working mean model:

m(X, A) = h−1(g(β!X, A)) (g ∈ H(β)
2 ; β ∈ #), (23)

subject to the constraint E[g(β!X, A)|X] = 0 on g, and the
distribution of Y is described by the exponential family chosen
in (22). We optimize the population logarithmic version of
Equation (22) over the unknowns (g, β) of Equation (23)

(g∗, β∗) = argmax
g∈H(β)

2 ,β∈#

E
[
Yg(β!X, A) − b(g(β!X, A))

]

subject to E
[
g(β!X, A)|X

]
= 0,

(24)
where convention that the terms that do not contain the param-
eter of interest (i.e., a(φ) and c(Y , φ)) can be dropped from the
expression of a log-likelihood) the expectation in the criterion
function is with respect to the joint distribution of (Y , A, X).

Thus, the solution (g∗, β∗) on the le"-hand side of Equation
(24) corresponds to the minimizer of the Kullback–Leibler (KL)
divergence between the distributions with the working mean
model (23) and the true mean model (21). In Equation (24),
b(s) = s2/2 for a Gaussian Y (for which the optimization (9)
is a special case of Equation (24)), b(s) = log{1 + exp(s)} for a
Bernoulli Y , and b(s) = exp(s) for a Poisson Y .

The constraint E
[
g(β!X, A)|X

]
= 0 in optimization (24)

implies

E
[
Yg(β!X, A) − b(g(β!X, A))

]

= E
[{

µ0(X) + g0(β!
0 X, A)

}
g(β!X, A) − b(g(β!X, A))

]

= E
[
E

[
µ0(X)g(β!X, A)|X

]]
+ E

[
g0(β!

0 X, A)(g(β!X, A)

−b(g(β!X, A))
]

= E
[
g0(β!

0 X, A)(g(β!X, A) − b(g(β!X, A))
]
,

(25)
which is free of µ0 in model (21). Therefore, the le"-hand side,
(g∗, β∗), of Equation (24) does not depend on the unspeci!ed X
“main” e#ect function µ0.

Proposition 1. The solution (g∗, β∗) of the constrained opti-
mization problem (24) satis!es:

g0 = h−1 ◦ g∗ and β0 = β∗ (26)

(a.s.), where g0 ∈ H(β0)
2 and β0 ∈ # are given from the

true mean model (21), and the function h−1 is the inverse of
the canonical link function associated with the assumed expo-
nential family distribution and the operator ◦ represents the
composition of two functions.

The proof of Proposition 1 is in Section A.1 (supplemental
materials). In Equation (26), h−1(s) = s (the identity function)
for a Gaussian Y , h−1(s) = exp(s)/{1 + exp(s)} for a Bernoulli
Y , and h−1(s) = exp(s) for a Poisson Y .

To solve (24) based on observed data (Yi, Ai, Xi) (i =
1, . . . , n), we replace the quadratic loss term in Equation (16) by
the negative of the log-likelihood of the data. For a !xed β ∈ #,
given the representation of g with Dθ in Equation (13), the basis
coe%cient θ is estimated by the inner iteratively reweighted least
squares (IRLS) and the associated smoothing parameters (λ and
λ̌ in Equation (16)) are estimated by the outer optimization of,
for example, REML or GCV, as part of Step 1 (of Section 3.2)
of the model !tting. The only adjustment to be made to the
conventional GAM estimation is to enforce the constraint
E[g(β!X, A)|β!X] = 0 on g. As in Section 3.1, this constraint
can be absorbed into the tensor product basis representation
(13). For Step 2 (of Section 3.2), once g is pro!led out (by Step
1), we replace the normal residual vector in Equation (19), that
is, Yn×1 − g(Xβ̃ , An×1), by the working residual from the !nal
IRLS !t of Step 1. Then we perform a weighted least squares
(instead of the least squares (20)) for β , where the weights are
given from the !nal IRLS !t of Step 1. We alternate between
the Steps 1 and 2 until convergence of β̂ , as in Section 3.2. The
resulting estimate for (g∗, β∗) in Equation (24) is then used to
estimate (g0, β0) in (21), based on the relationship (26). We also
note that the framework (24) can be extended to incorporate a
multinomial response, an instance of which we discuss in the
following remark.
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Remark 1. The approach (24) to optimizing the component
(g, β) of SIMSL can be generalized to the context of a pro-
portional odds single-index model, where we have an ordinal
response Y , in which its value exists on an arbitrary scale (in
K categories), with only the relative ordering between di#erent
values being important. To deal with such a case, we introduce
a length-K response vector Y = (Y1, Y2, . . . , YK)!, where its
component Yj denotes the indicator for category j, with asso-
ciated vector of probabilities (p1, p2, . . . , pK)!, in which pK =
1 − ∑K−1

j=1 pj (and pj > 0), and their cumulative probabilities:
P(Y ≤ j) = qj = ∑j

s=1 ps (j = 1, 2, . . . , K − 1). We can
model these cumulative probabilities (q1, q2, . . . , qK−1, 1)! by
a cumulative logit SIMSL:

h(P(Y ≤ j|X, A)) = h(qj(X, A)) = αj + µ(X) + g(β!X, A)

(j = 1, 2, . . . , K − 1) (27)

where αj ∈ R (α1 < α2 < . . . < αK−1) are unknown
cut-point parameters associated with the ordered response cat-
egories j = 1, 2, . . . , K − 1, and h(s) = log(s/(1 − s))
is the logit link. For the K-category multinomial exponential
family response Y , let us consider its canonical parameter η :=
(η1, η2, . . . , ηK−1, 0)! ∈ RK , where its nonzero components are
speci!ed by: ηj = log

(
pj/pK

)
= log

(
(qj − qj−1)/(1 − qK−1)

)

(j = 1, . . . , K − 1) (with q0 = 0), in which the cumula-
tive probabilities (q1, q2, . . . , qK−1, 1)! are speci!ed by model
(27). This multinomial exponential family representation for the
distribution of Y allows us to use the optimization framework
(24), with its criterion function extended to incorporate the
multivariate response: E

[
Y!η − b(η)

]
, where b(η) = log{1 +∑K−1

j=1 exp(ηj)}, for optimization of the cumulative logit SIMSL
(27). The threshold-point parameters αj ∈ R (α1 < α2 < · · · <

αK−1) in model (27) are estimated as part of Step 1 of model
!tting in Section 3.2 (alongside the model smoothing parame-
ters), in which the model (27), for each !xed β that is estimated
as part of Step 2, is optimized via the penalized IRLS with an
empirical version of −E

[
Y!η − b(η)

]
; the Steps 1 and 2 are

iterated until convergence. The heterogeneous treatment e#ect
g(β!X, A) in model (27) does not depend on j nor µ(X); this
allows us to develop an individualized dose rule independently
of the arbitrary categorization of Y , and of the unspeci!ed X
main e#ect µ(X) that does not in$uence the treatment e#ect.
Given X, the cumulative logit SIMSL-based individualized dose
rule is f (X) = argmax

a∈A
g(β!X, a).

In Section C (supplemental materials), we provide a real data
example illustrating the approach (24) to modeling interaction
e#ects between X and A on a count response variable Y , and a
simulation illustration for the utility of the proportional odds
SIMSL (27) when the treatment response Y is ordinal, which is
common in biomedical and epidemiological studies.

5. Simulation Example

In this section, we consider a set of simulation studies with data
generated from the four scenarios described in Chen, Zeng, and
Kosorok (2016). We generate p-dimensional covariates X =
(X1, . . . , Xp)!, where each entry is generated independently

from Uniform[−1, 1]. In Scenarios 1 and 2, the treatment A is
generated from Uniform[0, 2] independently of X, mimicking
a randomized trial. In Scenarios 3 and 4, the distribution of A
(described below) depends on X, mimicking an observational
study setting. In each scenario, the outcome Y given (X, A)

is generated from the standard normal distribution, with the
following four di#erent mean function scenarios:

1. Scenario 1: E[Y|X, A] = 8+4X1 −2X2 −2X3 −25(fopt(X)−
A)2, where fopt(X) = 1 + 0.5X1 + 0.5X2. Here, the optimal
individualized dose rule is a linear function of X.

2. Scenario 2: E[Y|X, A] = 8 + 4 cos(2πX2) − 2X4 − 8X3
5 −

15|fopt(X) − A|, where

fopt(X) = 0.6(−0.5 < X1 < 0.5) + 1.2(X1 > 0.5)

+1.2(X1 < −0.5) + X2
4 + 0.5 log(|X7| + 1) − 0.6.

Here, the optimal individualized dose rule is a nonlinear
function of X.

3. Scenario 3 is the same as in Scenario 2, except that A depends
on X as follows:

A ∼






TruncN (−0.5 + 0.5X1
+ 0.5X2, 0, 2, 0.5) , when X3 < 0

TruncN (|0.5 + 1.5X2| , 0, 2, 1) , when X3 > 0

where TruncN (µ, a, b, σ ) denotes the truncated normal dis-
tribution with mean µ, lower bound a and upper bound b,
and standard deviation σ .

4. Scenario 4 is the same as in Scenario 2, except that A depends
on X as follows:

A ∼ TruncN
(
fopt(X), 0, 2, 0.5

)
.

Following Chen, Zeng, and Kosorok (2016), we set p =
30 in Scenario 1, and p = 10 for Scenarios 2, 3, and 4. (In
Section A.2 of supplementary materials, we describe how these
scenarios mean models can be reparameterized to !t in the
framework (4).) For each simulated dataset, we apply the pro-
posed method of estimating the A-by-X interaction term in the
SIMSL (4) based on Equation (9), and the optimal dose rule fopt
by f̂ (X) = argmax

a∈A
ĝ∗(β̂∗!X, a). We simulated 200 datasets for

each scenario. For comparison, we report results of the estima-
tion approaches considered in Chen, Zeng, and Kosorok (2016),
including their Gaussian kernel-based outcome-weighted learn-
ing (K-O-learning) and linear kernel-based outcome-weighted
learning (L-O-learning). We also report a support vector regres-
sion (SVR; Vapnik 1995; Smola and Scholopf 2004) with a
Gaussian kernel to estimate the nonlinear relationship between
Y and (X, A) (Zhao, Kosorok, and Zeng 2009) that was used
for comparison. In Scenario 1, we used (X, A) as the predictors
for the outcome in the SIMSL. In Scenarios 2, 3 and 4, we used
(X, X2, A) (i.e., including a quadratic term in X) as the predictors
for the SIMSL.

Since we are simulating data from known models in which
the true relationship E[Y|X, A] is known, we can compare the
estimated dose rules f̂ derived from each method in terms of the
value (1). Speci!cally, an independent test set of size ñ = 5000
was generated and the value (1) of f̂ was approximated using
V̂(f̂ ) = ñ−1 ∑ñ

i=1 E[Yi|Xi, Ai = f̂ (Xi)], for each simulation
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Table 1. Average (sd) value V̂(f ) from 200 replicates from randomized trials.

n SIMSL K-O-learning L-O-learning SVR

Scenario 1 50 1.04 (4.06) 4.78 (0.48) 4.83 (1.40) −12.21(7.53)
100 6.63 (0.63) 5.69 (0.40) 5.39 (0.93) −2.57(6.34)
200 7.45 (0.20) 6.68 (0.26) 6.85 (0.34) 3.46(1, 97)
400 7.77 (0.08) 7.28 (0.15) 7.41 (0.14) 6.13(0.47)
800 7.88 (0.04) 7.54 (0.08) 7.67 (0.08) 7.36(0.12)

Scenario 2 50 0.90 (2.04) 2.00 (0.29) 1.16 (0.71) −1.96(1.70)
100 3.65 (0.76) 2.19 (0.43) 1.57 (0.52) 0.24(1.42)
200 4.71 (0.41) 2.84 (0.37) 2.02 (0.30) 2.01(0.84)
400 5.25 (0.20) 3.69 (0.27) 2.30 (0.18) 3.47(0.37)
800 5.59 (0.12) 4.41 (0.19) 2.49 (0.10) 4.35(0.19)

NOTE: In both settings, the oracle fopt attains a value V(fopt) = 8 (boldface denotes
the largest in each row).

Table 2. Average (sd) value V̂(f ) from 200 replicates from observational studies.

n SIMSL K-O-learning K-O-learning(Prp) SVR

Scenario 3 200 4.03 (0.97) 2.68 (0.30) 2.74 (0.29) 1.99(0.83)
800 5.46 (0.20) 4.06 (0.30) 4.19 (0.20) 4.09(0.28)

Scenario 4 200 4.07 (0.72) 3.29 (0.28) 3.23 (0.28) −0.95(1.57)
800 5.51 (0.19) 4.91 (0.14) 4.73 (0.17) 3.04(0.52)

NOTE: In both settings, the oracle fopt attains a value V(fopt) = 8 (boldface denotes
the largest in each row).

run. Given each scenario and a training sample size n, we repli-
cate the simulation experiment 200 times, each time estimating
the value. Again, following Chen, Zeng, and Kosorok (2016), we
report the averaged estimated values (and standard deviations)
for the cases where f̂ is estimated from a training set of size n =
50, 100, 200, 400, and 800 for Scenarios 1 and 2, and the cases
with n = 200 and 800 for Scenarios 3 and 4. The simulation
results are given in Tables 1 and 2.

The results in Tables 1 and 2 indicate that the proposed
regression method for optimizing dose rules outperforms the
alternative approaches presented in Chen, Zeng, and Kosorok
(2016) in all cases except when the training sample size is
very small (n = 50). In Table 2, K-O-learning(Prp) refers
to the propensity score-adjusted K-O-learning of Chen, Zeng,
and Kosorok (2016). When n = 50, the outcome-weighted
learning methods outperform the regression-based approaches
(i.e., SIMSL and SVR), especially for Scenario 1 (with p = 30)
where the regression approaches exhibit large variances. How-
ever, when n = 100, the performance of SIMSL improves dra-
matically in terms of both value and small variance. We also note
that using (A, X, X2) instead of (A, X) as predictors of SIMSL in
Scenario 2 lead to a substantial improvement in performance.
If (X, A) is used for SIMSL in Scenario 2, the estimated val-
ues (and sd) are: −0.98(2.15), 0.56(1.54), 1.91(0.89), 2.70(0.64),
and 3.23(0.41), for n = 50, 100, 200, 400 and 800, respectively.

6. Application to Optimization of the Warfarin Dose
With Clinical and Pharmacogenetic Data

In this section, the utility of the SIMSL approach to personalized
dose !nding is illustrated from an anticoagulant study. War-
farin is a widely used anticoagulant to treat and prevent blood
clots. The therapeutic dosage of warfarin varies widely across
patients. Our analysis of the data will broadly follow that of
Chen, Zeng, and Kosorok (2016). A"er removing patients with
missing data, the dataset provided by International Warfarin

Pharmacogenetics Consortium et al. (2009) (publicly available
to download from https://www.pharmgkb.org/downloads/) con-
sists of 1780 subjects, including information on patient covari-
ates (X), !nal therapeutic dosages (A), and patient outcomes
(INR, International Normalized Ratio). INR is a measure of how
rapidly the blood can clot. For patients prescribed warfarin, the
target INR is around 2.5. To convert the INR to a measurement
responding to the warfarin dose level, we construct an outcome
Y = −|2.5 − INR|, and a larger value of Y is considered
desirable.

There were 13 covariates X = (X1, . . . , X13)! in the dataset
(both clinical and pharmacogenetic variables): weight (X1),
height (X2), age (X3), use of the cytochrome P450 enzyme
inducers (X4; the enzyme inducers considered in this analysis
includes phenytoin, carbamazepine, and rifampin), use of
amiodarone (X5), gender (X6; 1 for male, 0 for female),
African or black race (X7), Asian race (X8), the VKORC1
A/G genotype (X9), the VKORC1 A/A genotype (X10), the
CYP2C9 *1/*2 genotype (X11), the CYP2C9 *1/*3 genotype
(X12), and the other CYP2C9 genotypes (excluding the CYP2C9
*1/*1 genotype which is taken as the baseline genotype) (X13).
Further details on these covariates are given in International
Warfarin Pharmacogenetics Consortium et al. (2009). The !rst
3 covariates (weight, height, and age) were treated as continuous
variables, standardized to have mean zero and unit variance; the
other 10 covariates are indicator variables.

In estimating the optimal individualized dose rule fopt, mod-
eling the drug (dose level A) interactions with the patient covari-
ates X is essential. Under the proposed SIMSL approach (4),
fopt(X) = argmax

a∈A
g(β!X, a) and thus the A-by-X interaction

e#ect term g(β!X, A) is the target component of interest. In
SIMSL, due to orthogonality (7), we can solve Equation (9)
for (g, β), without having to model the µ term in Equation
(4). However, modeling the µ term, even with a misspeci!ed
working model, can generally improve the e%ciency of the
estimator of (g, β) (i.e., yielding smaller variances for estimators;
see Park et al. (2020) for a theoretical justi!cation in the case
where treatment A is a discrete or binary variable), which leads
to improve the e%ciency of the estimator of fopt (see Section C.1
(supplementary materials) for a simulation illustration in which
an enhanced estimation performance is illustrated when the X
main e#ect is incorporated to the estimation of fopt).

Thus, in this application, we model the µ term of Equation
(4) with a possibly misspeci!ed working model, which consists
of a set of linear terms for the indicators X4, . . . , X13 and a set
of cubic P-spline smooth terms for the continuous covariates
X1, X2 and X3. These terms are estimated alongside the het-
erogeneous treatment e#ect term g(β!X, A) by the procedure
described in Section C.1 (supplementary materials), which is
a slight modi!cation to that described in Section 3.2. (The
estimated coe%cient β , with or without incorporating the µ

term in the estimation, along with their bootstrap con!dence
intervals, are provided in Section D of supplementary mate-
rials.) The third panel in Figure 1 displays a surface plot of
the estimated 2-dimensional link function g(β!X, A), showing
an interactive relationship on the index-treatment domain. The
!rst two panels in Figure 1 display the estimated marginal e#ect
function for the dose A and that for the estimated index β!X.

https://www.pharmgkb.org/downloads/
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Figure 1. The "rst two panels: the marginal e!ect of dose A (left panel) and that of the estimated single-index (middle panel) with 95% con"dence bands (dashed curves)
given the estimated β!X . The third panel: the estimated link surface (g) for the dose (A) and index (β!X) interaction; the red and green surfaces are at ±2 standard error
from the estimated surface (the black) in the middle, conditioning on the estimated single index.

We construct a 95% normal approximation bootstrap con-
!dence interval for β , based on 500 bootstrap replications (see
Section C.3 (supplementary materials) for the con!dence inter-
val construction and for a coverage probability simulation).
The con!dence intervals for the βj’s associated with the covari-
ates weight (X1), height (X2), the use of the cytochrome P450
enzyme inducers (X4), Asian race (X8), the VKORC1 A/G geno-
type (X9), and the CYP2C9 *1/*2 genotypes (X11) do not include
0. We infer that these covariates are potentially clinically impor-
tant drug e#ect modi!ers, interacting with warfarin in their
e#ects on INR.

Chen, Zeng, and Kosorok (2016) noted that the analysis
results from International Warfarin Pharmacogenetics Consor-
tium et al. (2009), as well as their linear kernel-based outcome-
weighted learning results, suggest increasing the dose if patients
are taking Cytochrome P450 enzyme (X4). Roughly speaking,
the interaction surface g (the right-most panel) in Figure 1
indicates that for a smaller value of β!X (e.g., β!X < −0.3),
a moderate or a relatively low dose A (e.g., A < 50) may be
preferred, whereas for a larger value of β!X (e.g., β!X > 0),
a relatively high dose A (e.g., A > 50) may be preferred.
Considering the sign of the estimated coe%cient (β̂4 = −0.60)
associated with X4, this is roughly consistent with International
Warfarin Pharmacogenetics Consortium et al. (2009) and Chen,
Zeng, and Kosorok (2016).

To evaluate the performance of the individualized dose rules
estimated from the six methods, including the propensity score-
adjusted outcome-weighted learning with a linear/Gaussian ker-
nel, denoted as L-O-learning (Prp) and K-O-learning (Prp),
respectively) considered in Section 5, we randomly split the
dataset at a ratio of one-to-one into a training set and a testing
set, replicated 100 times, each time estimating fopt using the 6
methods based on the training set, and estimating the value
(1) of each estimated fopt based on the testing set. Unlike the
simulated data in Section 5, the true relationship between the
covariate-speci!c dose and the response is unknown. Therefore,
for each dose rule f , we need to estimate the value (1) from the
testing data. Given a dose rule f , only a very small proportion

(or none) of the observations will satisfy Ai = f (Xi), and
thus only a very small proportion (or none) of the observations
in the testing data will contribute information to estimate the
value (1). However, Cai and Tian (2016) noted that the value
(1) for each f can also be written as V(f ) = E[E[Y|A =
f (X), f (X)]]. Therefore, using a two-dimensional smoother of A
and f (X) for Y , one may !rst obtain a nonparametric estimate
of E[Y|A, f (X)], denoted as m̂(A, f (X)), and then V(f ) may
be estimated as V̂(f ) = n−1 ∑n

i=1 m̂(f (Xi), f (Xi)). Speci!cally,
given a dose rule f estimated from a training set, we can estimate
E[Y|A, f (X)] based on (Yi, Ai, f (Xi)) from a test set, using a set
of thin plate regression spline bases obtained from a rank-100
eigen-approximation to a thin plate spline, with the smooth-
ness parameter selected by REML, implemented via the R (R
Core Team 2019) function mgcv::gam (Wood 2019). A thin
plate spline is an isotropic smooth; isotropy is o"en appropriate
for two variables observed on the same scale, which is the
case here.

Figure 2 displays boxplots describing the distributions for
the estimated values (1) of the approaches “SIMSL(w. X main)”
(SIMSL with the µ term in the estimation) and “SIMSL(w.o. X
main)” (SIMSL without the µ term in the estimation), and the
other !ve estimation methods described in Section 5, obtained
from the aforementioned 100 random training/testing splits.
The boxplots indicate that the proposed SIMSL methods (note
that “SIMSL(w. X main)” slightly outperforms “SIMSL(w.o. X
main)”) and the propensity-score adjusted K-O-learning of
Chen, Zeng, and Kosorok (2016) perform at a similar level,
while outperforming all other approaches, illustrating the
potential utility of the proposed method. In comparison to
the outcome-weighted learning approach of Chen, Zeng, and
Kosorok (2016), one advantage of the proposed approach is
that it allows visualization of the estimated interactive structure
on the dose-index domain, as illustrated in the right panel of
Figure 1. Additionally, if each of the covariates is standardized
to have, say, unit variance, then the relative importance of each
covariate in characterizing the heterogeneous dose response can
be determined by the magnitude of the estimated coe%cients in
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Figure 2. Boxplots of the estimated values of the individualized dose rules using 7 approaches, obtained from 100 randomly split testing sets. Mean (and standard
deviation) of the value estimates: SIMSL(w. X main): -0.231 (0.03); SIMSL(w.o. X main): −0.237 (0.03); SVR: −0.254 (0.02); L-O-learning(Prp): −0.274 (0.01); K-O-learning(Prp):
−0.234 (0.03); L-O-learning: −0.274 (0.01); and K-O-learning: −0.279 (0.01).

β , rendering a potentially useful interpretation when examining
the drug–covariates interactions.

7. Discussion

In this article, we proposed a single-index model that utilizes
a surface link-function as a function of a linear projection of
covariates and a continuous “treatment” variable, which parsi-
moniously represents the interaction e#ect between covariates
and a treatment de!ned on a continuum. The model provides
an intuitive tool for investigating personalized dose !nding in
precision medicine, without the need for a signi!cant change in
the established generalized additive regression modeling frame-
work.

One important limitation is that the con!dence band associ-
ated with the estimated surface g is computed conditional on the
estimated β!X, and the uncertainty in β is not accounted for.
The fact that the domain of g varies depending on the estimate
of β complicates the con!dence band construction for g. One
potential approach is to consider a Bayesian framework and
a posterior distribution of g(β!X, A), and make probabilistic
statements about the prediction of the component g(β!X, A)

given (X, A). Furthermore, depending on context, for scienti!c
interpretability of the model, it may be sometimes desirable
to consider shape constraints such as monotonicity or convex-
ity/concavity (see Section C.4 (supplementary materials) for
discussion on shape constraints), as well as optimization under
safety constraints (Laber et al. 2018). The development of a
Bayesian model estimation and inference, with potential mono-
tonicity or convexity/concavity constraints on the link surface
is currently under investigation. In many applications, only a
subset of variables may be useful in determining an optimal
individualized dose rule. Also, high-dimensional settings can
lead to instabilities and issues of over!tting. Forthcoming work
will introduce a regularization method that can both avoid
over!tting and choose among multiple potential covariates by

obtaining a sparse estimate of the single-index coe%cient β .
Future extensions of this work could also include an extension
to incorporate a functional covariate.

Supplemental Materials

Supplementary Materials: a pdf !le containing supporting information
for the main manuscript, including the proof of Proposition 1, a real
data analysis and additional simulations illustrating an application of the
generalized single-index regression approach in Section 4, and construc-
tion of bootstrap con!dence intervals and supplementary information for
Section 6.
R-package for SIMSL routine: R-package simsl (Park et al. 2021) available
on CRAN containing code to perform the proposed single-index regres-
sion method, and the datasets and the simulation examples illustrated in
this article.
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