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Abstract
This paper develops a Bayesian model with a flexible link function connecting a 
binary treatment response to a linear combination of covariates and a treatment indi-
cator and the interaction between the two. Generalized linear models allowing data-
driven link functions are often called “single-index models” and are among popular 
semi-parametric modeling methods. In this paper, we focus on modeling heteroge-
neous treatment effects, with the goal of developing a treatment benefit index (TBI) 
incorporating prior information from historical data. The model makes inference on 
a composite moderator of treatment effects, summarizing the effect of the predictors 
within a single variable through a linear projection of the predictors. This treatment 
benefit index can be useful for stratifying patients according to their predicted treat-
ment benefit levels and can be especially useful for precision health applications. 
The proposed method is applied to a COVID-19 treatment study.

Keywords Bayesian single-index models · Heterogeneous treatment effects · 
Precision medicine

1 Introduction

In precision medicine, a critical concern is to characterize individuals’ heterogeneity 
in treatment responses in order to enable individual-specific treatment decisions to 
be made [1–3]. Tailoring medical treatments according to individuals’ characteris-
tics requires inferring individual-level treatment effects (ITE) (as opposed to infer-
ring the treatment effects on average across the entire population). Then, developing 
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an individualized treatment rule (ITR) [4–14, see, e.g.,] naturally follows from draw-
ing inferences about the ITE. As an alternative route to developing an ITR, direct 
optimization of the population average over a class of ITRs [9, 10, 15, 16, see, e.g.,] 
may be considered.

Substantial developments have been made in the statistical methodology on the 
ITE estimation [17, see, e.g., review provided in]. Examples within the frequentist 
paradigm include R-learner [18], kernel-based multi-task learner [19], neural net-
works [20], tree-based ensembles [21], and semi-parametric regression [22], among 
many others. In the Bayesian paradigm, one prominent approach is the causal Bayes-
ian additive regression trees (BART) [23–26, see, e.g.,] among others. Although 
there are many statistical learning methods that exhibit good performance in captur-
ing complex nonlinear relationship for individual treatment effects, in this paper, we 
focus on the Bayesian estimation of single-index regression models for ITE, as there 
has been no specific work designed to model the heterogeneous treatment effects 
using a single-index model in the Bayesian paradigm, albeit the usefulness that 
arises from the simplicity in its model formulation.

A single-index model [27, 28, see, e.g.,] is one of the most popular semi-paramet-
ric models and provides an efficient way of dealing with multivariate nonparamet-
ric regression. Single-index models expand the scope of generalized linear models 
through a flexible data-driven link function. The model summarizes the effect of 
the predictors within a single variable through a linear projection of the predictors, 
called the (single) index. In the context of modeling heterogeneous treatment effects, 
such an index corresponds to a composite moderator of treatment effects, and we 
will demonstrate that such an index is useful for optimizing treatment decisions and 
the approach provides a natural way to summarize uncertainties associated with this 
composite moderator, through its posterior distribution.

There are broadly two lines of research on Bayesian single-index models. One 
approach employs a spline-based representation of the link [29–33]. The other line 
of research employs a Gaussian process-type representation of the link [34–38], 
where the unknown link function is assumed to be a Gaussian process a priori. In 
this article, we take the former spline-based approach as it allows us to easily incor-
porate an identifiability constraint on the link function used to model the heteroge-
neous treatment effect term.

In this paper, we consider a treatment variable A taking a value in {0, 1} with the 
associated randomization probabilities {�0,�1} in the context of randomized clinical 
trials (RCTs), with the corresponding potential outcomes denoted as

{Y (0), Y (1)} . Depending on A, the observed outcome is Y = (1 − A)Y (0) + AY (1) , 
where the outcome Y is assumed to be a member of the exponential family. Specifi-
cally, we focus on a binary outcome Y ∈ {0, 1} , where we assume, without loss of 
generality, that the value of Y = 0 is desired so that Y = 1 indicates a bad outcome 
(e.g., death). On the population level, this means that a small value of h(E[Y]) is 
desired, where h(⋅) denotes the canonical link of the assumed exponential family dis-
tribution. For the binary outcome considered here, h(⋅) is the logit function.

The proposed single-index approach to modeling heterogeneous treatment effects 
was motivated by an application to a COVID-19 convalescent plasma (CCP) treat-
ment study [39]. One of the primary goals of this RCT was to guide CCP treatment 
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recommendations by providing an estimate of a differential treatment outcome when 
a patient is treated with CCP vs. without CCP, where a larger differential in favor of 
CCP would indicate a more compelling reason for recommending CCP. The esti-
mated index, defined as a linear combination of covariates X , which is part of the 
heterogeneous treatment effect term of the model, can be used to discover profiles 
of patients with COVID-19 associated with different benefits from CCP treatment. 
Specifically, the covariates X ∈ ℝ

p are observed pretreatment measurements and 
predictors of {Y (0), Y (1)} . Our goal is to utilize the information in X to develop an 
ITR that optimizes the value of h(E[Y]) for future patients.

2  Method

2.1  Optimal Individualized Treatment Rules

In this subsection, we define an optimal ITR. The Bayes decision a∗ ∶ x ↦ {0, 1} 
minimizes, over treatment decision (action) a ∈ {0, 1} , the patient-specific posterior 
expected loss for a patient with pretreatment characteristic X = x . Let us define the 
loss function for making treatment decision a as follows:

where � represents the model parameters characterizing the relationship 
between the potential treatment outcomes (Y (0), Y (1)) and predictors X . In (1), 
E[Y (a)|�, x] = (1 − a)E[Y (0)|�, x] + aE[Y (1)|�, x] is the expected outcome under a 
particular treatment assignment a. Let us denote the observed clinical trial data as 
D consisting of triplets Di = {Xi,Ai, Yi} with i ∈ {1,… , n} , where Xi ∈ ℝ

p is a set 
of observed pretreatment covariates and Yi ∈ {0, 1} is an observed outcome for indi-
vidual i.

Viewing the loss function L(a,�, x) in (1) as a function of treatment assignment 
a given a particular x , the optimal Bayes decision a∗(x) will minimize the posterior 
expected loss given x , i.e.,

where the expectation is taken with respect to the posterior distribution of 
� given the observed data D . In particular, if we define the loss contrast 
Δ(�, x) ∶= L(a = 1,�, x) − L(a = 0,�, x) , then the above optimal Bayes decision 
a∗(x) is equivalent to

(where �(⋅) is the indicator function), which we define as the optimal ITR.
We will utilize the following standard causal inference assumptions [40, 41, see, 

e.g.,]: 

(1) no unmeasured confoundedness, Y (a)
⟂ A given X = x,

(1)L(a,�, x) = h(E[Y (a)|�, x]),

a∗(x) = argmin
a∈{0,1}

E�|D,x[L(a,�, x)],

(2)a∗(x) = �(E�|D,x[Δ(�,x)]<0)
,



400 Statistics in Biosciences (2023) 15:397–418

1 3

(2) p o s i t i v i t y ,  0 < P(A = 1|X = x) < 1 ,  w h i c h  t o g e t h e r  i m p l y 
h(E[Y (a)|�,X = x]) = h(E[Y|A = a,�,X = x]) , and

(3) stable unit treatment value assumption (SUTVA). Under these assump-
tions, we can write the loss contrast function Δ(�, x) in (2) as follows: 
Δ(�, x) = h{E[Y|A = 1,�, x]} − h{E[Y|A = 0,�, x]} . Therefore, we can con-
struct the optimal Bayes decision (2) based on posterior inference on the canoni-
cal parameter h{E[Y|A,�,X]} of the exponential family response Y. In the fol-
lowing subsection, we will specify our model for the distributions of (Y|A,�,X) 
and � , to estimate the optimal ITR (2).

2.2  Model and Prior Specification

2.2.1  Model

Let Y = (Y1,… , Yn)
⊤ be a vector of the treatment outcomes, with each Yi indepen-

dently following a specific exponential family distribution with density

where the unknown parameters (which we collectively denote as � ) will be esti-
mated in a Bayesian framework. In (3), b(⋅) and c(⋅) are known functions specific 
to the given member of the exponential family, whereas g(⋅, ⋅) is an unknown flex-
ible function and 𝜙 > 0 is an unknown dispersion parameter ( � = 1 specializes to a 
one-parameter exponential family distribution). Throughout we will drop � from (3) 
because it is fixed at unity in our motivating dataset that has Bernoulli responses.

The canonical parameter � ∈ ℝ in (3) of the response distribution is 
related to the treatment decision loss function L(a,�, x) in (1), through 
�(�, x, a) = h(E[Y|�, x, a]) = h(E[Y (a)|�, x]) = L(a,�, x) , under the standard causal 
inference assumptions.

Within the specification of � in model (3), the first term X⊤m represents the pre-
treatment covariates’ “main” effect, whereas the second term g(X⊤�,A) is the X-
by-A interaction effect. This interaction effect is characterized by an unspecified 
treatment a-specific smooth function g(u, a) (a = 0, 1) which is a function of a lin-
ear projection u = X⊤� ∈ ℝ . The projection vector � ∈ ℝ

p is subject to ‖�‖ = 1 , 
i.e., restricted to � ∈ �

p−1 , where �p−1 is the p − 1-dimensional unit sphere, and the 
single-index X⊤� provides a dimension reduction specifically for the X-by-A inter-
action effect. In (3), for any X and � , we shall impose the following identifiability 
condition for the component g

which separates the component g(X⊤�,A) of interest (the “prescriptive” term repre-
senting the heterogeneous treatment effect), from the component X⊤m (the “prog-
nostic” term that does not represent the heterogeneous treatment effect). In general, 

(3)
f (Yi|𝜂i,𝜙) = exp

{
𝜙−1[Yi𝜂i − b(𝜂i)] + c(Yi,𝜙)

}

𝜂i = X⊤

i
m + g(X⊤

i
�,Ai),

(4)E[g(X⊤�,A)|X] = 0,
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the covariates, X , represented in the terms g(X⊤�,A) and X⊤m in (3), are not neces-
sarily the same variates, but for notational simplicity, the same notation for these 
sets of covariates was employed. As another abuse of notation for simplicity, the 
treatment A’s main effect, which can be represented by �0A ∈ ℝ for some unknown 
�0 ∈ ℝ will be estimated, together with the model intercept, as part of the compo-
nent X⊤m in (3).

Remark 2.1 Model (3) with the identifiability condition (4) is more suitable to con-
duct a posterior inference for heterogeneous treatment effects than the model with 
𝜂 = X⊤m + g(X⊤�)A , because this particular parametrization (3) is invariant of the 
choice of coding of A. In the latter model, the choice of the treatment A coding can 
meaningfully impact posterior inferences because the two effects X⊤m and g(X⊤�)A 
can alias each another, particularly when the same set X enters into the both terms. 
Under condition (4), the effect captured by the prognostic term, X⊤m , and the pre-
scriptive term, g(X⊤�,A) , can be distinguished regardless of treatment A coding.

For an individual with pretreatment characteristics x , the loss contrast Δ(�, x) in 
(2) under model (3) is

The loss contrast (3) indicates that only the parameters g and � (and not m and � ) 
in model (3) are used to specify the ITR (2), hence g and � correspond to the “sig-
nal” parameters of interest. Given definition (2), we will define a “treatment benefit 
index” (TBI) in terms of a (posterior) probability,

that is, the probability of the (active) treatment A = 1 providing a greater benefit 
than the treatment A = 0 (for a patient with pretreatment characteristic x ), in which 
the probability is evaluated with respect to the posterior distribution of � . The opti-
mal Bayes decision a∗(x) in (2) is then represented by �(TBI(x)>0.5) . Since a large value 
of (6) indicates a large expected “benefit” of taking the active treatment A = 1 vs. 
control A = 0 , the TBI(x) in (6) constructs a “gradient” of the active treatment’s 
benefit that ranges from 0 to 1,

as a function of patient characteristic x . Furthermore, for each X = x , we 
can obtain a posterior distribution of the treatment a-specific expected out-
come h−1{x⊤m + g(x⊤�, a)} based on the posterior distribution of the parameters 
� = {m, g, �}.

2.2.2  Representation of the Link Function g

Following [29], we will use a cubic B-spline basis to represent the flexible function 
g(⋅, a) of (3).

(5)Δ(�, x) = g(x⊤�,A = 1) − g(x⊤�,A = 0).

(6)TBI(x) ∶= P(Δ(�, x) < 0|D) ∈ [0, 1],
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Using B-splines is appealing because the basis functions are strictly local, as each 
basis function is only non-zero over the intervals between five adjacent knots [42].

Using splines allows us to easily incorporate the constraint (4) on the function g, 
as we describe shortly.

For each fixed � , the function g is represented as follows:

for some fixed L-dimensional basis �̃(⋅) ∈ ℝ
L

(e.g., B-spline basis on evenly spaced knots on a bounded range of {�⊤xi}
n
i=1

 ) 
and a set of unknown treatment a-specific spline coefficients �̃a ∈ ℝ

L (a = 0, 1) . 
In our simulation illustration and in the application, we used a cubic B-spline 
basis with L = 4 + [n1∕5.5] where [n1∕5.5] denotes the integer part of n1∕5.5 , as rec-
ommended by [43].

Given representation (7) for g, the identifiability constraint (4) is implied by 
the linear constraint:

where � = [�0IL; �1IL] with �a = P(A = a) (i.e., the randomization probabili-
ties) is the L × 2 L matrix (in which IL denotes the L × L identity matrix) and 
�̃ = (�̃⊤

0
, �̃⊤

1
) ∈ ℝ

2 L is an unknown basis coefficient vector.
To represent (7) in matrix notation, given � , let the n × L matrices D̃�,a 

(a = 0, 1) denote the evaluation matrices of the basis �̃(⋅) on {�⊤xi}
n
i=1

 , specific 
to the treatment A = a (a = 0, 1) , whose ith row is the 1 × L vector �̃(�⊤xi)

⊤ if 
Ai = a and a row of zeros 0⊤

L
 if Ai ≠ a . Then, the column-wise concatenation of 

the design matrices D̃�,a (a = 0, 1) , i.e., the n × 2L matrix D̃� = [D̃�,0;D̃�,1] defines 
the model matrix associated with �̃ ∈ ℝ

2L . Then, we can represent the function g 
in (7) evaluated on the sample data, by the length-n vector: g = D̃� �̃ ∈ ℝ

n.
The linear constraint (8) on �̃ can be conveniently absorbed into the model 

matrix D̃� by reparametrization, as we describe next. We can find a 2L × L basis 
matrix Q (that spans the null space of the linear constraint (8)) such that if we set 
�̃ = Q� for any arbitrary vector � ∈ ℝ

L , then the resulting vector �̃ ∈ ℝ
2 L auto-

matically satisfies the constraint (8). Such a basis matrix Q can be constructed 
by a QR decomposition of the matrix �⊤ in (8). Then representation g = D̃� �̃ can 
be reparametrized, in terms of the unconstrained vector � ∈ ℝ

L , by replacing D̃� 
with the reparametrized model matrix D� = D̃�Q, yielding the representation 
g = D��.

Once we have an inferential procedure on � , we can also consider inference 
on the transformed parameter �̃ = Q� , from which we can make inference on the 
treatment a-specific functions g(�⊤

⋅, a) = �̃(�⊤
⋅)⊤�̃a (a = 0, 1).

We note that �̃(⋅) ∈ ℝ
L in (7) defines a system of functions specifically cho-

sen to be used as building blocks to represent a (smooth, as implied by penal-
ized splines) link function g(⋅, a) for each treatment condition a. If a different 
basis function is used to represent the link function, we may have a different 

(7)g(�⊤xi, ai) = �̃(�⊤xi)
⊤�̃ai (i = 1,… , n)

(8)𝜋0�̃0 + 𝜋1�̃1 = ��̃ = 0,
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performance. We may need to identify a best suitable basis for the data which 
depend on the underlying heterogeneous treatment effect (i.e., the underlying log 
odds ratio function). For example, if there is a reason to expect that the log odds 
ratio function (5) is a jagged (or, less likely, a cyclic) function over the index 
x⊤� , then a wavelet [44, e.g.,] (or Fourier [45, e.g.,]) basis might be more suit-
able. Although the associated basis coefficient vector, �̃ , will still be subject to 
the identifiability constraint (8) for a different basis system, a specifically tailored 
prior and penalization would be more appropriate, for example, ( L1 type) Laplace-
Zero prior with some hyperparameter determining the sparsity basis [44].

2.2.3  Prior Specification

How we specify priors for � , m , and � associated with model (3) is given in this 
subsection.

• For the distribution of � ∈ �
p−1 , we will use the von Mises–Fisher with concen-

tration parameter 𝜅 > 0 and modal parameter �0 ∈ �
p−1 , 

which is a probability distribution for � on the (p − 1) unit sphere in ℝp.
• We will use m ∼ N(m0,R) , for some vector m0 ∈ ℝ

p and p × p symmetric posi-
tive definite matrix R.

• Since the domain of the function g in (3) depends on � , the prior on g will 
depend on � . Conditioning on � , following [29], we will use data-dependent 
prior for � ∈ ℝ

L , 

 where 

and �0 ∶= (D⊤

�
WD�)

−1 which corresponds to a special case of �� at � = 0 . The 
prior (10) is a Zellner’s g-prior that has the same dispersion matrix as a weighted 
least squares estimator defined based on the vector of adjusted responses Z and 
the matrix of weights W , which are specified in the next subsection. In the prior 
(10), � ≥ 0 is a hyperparameter which will be selected via an empirical Bayes 
procedure with the generalized cross-validation (GCV), as in [29]. An advantage 
of using the prior (10) is that it allows us to analytically integrate � out of the 
joint posterior P(�, �|m,Y) , facilitating the Gibbs sampling of �.

(9)P(�) ∝ exp(𝜅�⊤�0),

(10)�|� ∼ N(�𝜌D
⊤

�
WZ, �0),

�𝜌 ∶= (D⊤

�
WD� + 𝜌I)−1,
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2.3  Posterior Computation

To conduct posterior inference on (m, �, �) , we will simulate samples from the joint 
posterior P(m, �, �|Y) (where we use Y = (y1,… , yn)

⊤ to denote the observed treat-
ment outcomes). Since it is difficult to draw samples directly from this joint posterior 
distribution, we will use a Metropolis-Within-Gibbs algorithm. The Gibbs algorithm 
will iterate between the following two Steps: Step 1) sample m from P(m|�, �,Y) 
and Step 2) sample (�, �) from P(�, �|m,Y) . Specifically, in Step 2, since the joint 
conditional posterior P(�, �|m,Y) does not have a convenient form to directly sam-
ple from, we will employ a Metropolis–Hastings step.

2.3.1  Conditional Posteriors

1. Derivation of (m|�, �,Y) . For fixed � and � , we will quadratically approximate 
the log likelihood function of m at its mode, which we denote by m̌ . To find 
the mode m̌ , we will use a Fisher scoring, iteratively updating the center of the 
quadratic approximation. For fixed � and � , at the convergence of the Fisher 
scoring, we define the adjusted response vector Ž ∶= (ž1,… , žn)

⊤ ∈ ℝ
n where 

ži ∶= h�(�̌�i)(yi − �̌�i) + �̌�i , in which �̌�i = m̌⊤xi + �(�⊤xi)
⊤� and �̌�i = h−1(�̌�i) , and 

the n × n weight matrix W̌ = diag(w̌i) , where w̌i = 1∕{(h�(�̌�i))
2V(�̌�i)} , in which 

V(�̌�i) = �̌�i(1 − �̌�i) . Given each � and � , the negative log likelihood of m is approx-
imately represented in terms of a weighted least squares (WLS) objective function 
(up to a constant of proportionality), 

Given the prior m ∼ N(m0,R) and the above approximated negative log likeli-
hood, the conditional posterior for m is given by 

2. Derivation of (�, �|m,Y) .  Given the joint conditional poster ior 
P(�, �|m,Y) = P(�|m,Y)P(�|�,m,Y) , we will first sample � from P(�|m,Y) 
and then � from P(�|�,m,Y) . Specifically, following [29], we will use a Metrop-
olis–Hastings algorithm to sample � from p(�|m,Y) . However, this approach 
employed in [29] cannot be directly applied to our settings, due to the non-Gauss-
ian likelihood. Thus, we will perform a quadratic approximation of the negative 
log likelihood function of � at its mode, which we denote by �̌ . To find �̌ , as in 
Step 1, we will conduct a Fisher scoring. For each fixed � and m , this quadratic 
approximation at the convergence of the Fisher scoring is summarized in the form 
of the WLS objective function (up to a constant of proportionality), 

n∑

i=1

w̌i(ži −m⊤xi)
2 = (Ž − Xm)⊤W̌(Ž − Xm).

(11)P(m|�, �,Y) = N
(
(R−1 + X⊤W̌X)−1(R−1m0 + X⊤W̌Ž), (R−1 + X⊤W̌X)−1

)
.

(12)
n∑

i=1

wi(zi − �(�⊤xi)
⊤�)2 = (Z − D��)

⊤W(Z − D��),
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as a function of � , in which Z ∶= (z1,… , zn)
⊤ ∈ ℝ

n is the adjusted response 
vector with zi ∶= h�(�̂�i)(yi − �̂�i) + �̂�i obtained at the convergence, where 
�̂�i = m⊤xi + �(�⊤xi)

⊤�̌ and �̂�i = h−1(�̂�i) and W = diag(wi) is the n × n weight 
matrix with wi = 1∕{(h�(�̂�i))

2V(�̂�i)} . Given the quadratic approximation (12), 
we can write the joint conditional posterior P(�, �|m,Y) : 

Given the conditional prior P(�|�,m) in (10), we can write the terms involving 
� in (13) as follows: 

where 

Specifically, given (14), we can analytically integrate � out of the joint condi-
tional P(�, �|m,Y) in (13), which yields 

where 𝜑�̃

[
(I + �

−1
0
�𝜌)D

⊤

�
WZ

]
 is the moment generating function (MGF) of the 

variate �̃ ∼ N(0,�0∕2) evaluated at (I + �
−1
0
�𝜌)D

⊤

�
WZ . The familiar closed-

form expression of the Gaussian MGF allows us to write the last line of (15) as 
follows: 

where � = (I + ���
−1
0
)�0(I + ���

−1
0
) . The expression (16) provides a closed 

form for the approximated P(�|m,Y) up to a constant of proportionality, which 
we will use to conduct a random walk Metropolis Markov chain Monte Carlo 
(MCMC) algorithm. The MCMC algorithm to sample (�|m,Y) based on (16) 
is described in the next subsection. Given each m and � , we can sample � from 
P(�|�,m,Y) , 

(13)
P(�, �|m,Y) = P(Y|�, �,m)P(�|�,m)P(�)

∝ exp{−
1

2
(Z − D��)

⊤W(Z − D��)} P(�|�,m) exp(𝜅�⊤�0).

(14)

∝ exp
(
−
1

2

{
(Z − D��)

⊤W(Z − D��) + (� − �𝜌D
⊤

�
WZ)⊤�−1

0
(� − �𝜌D

⊤

�
WZ)

})

∝ exp
(
−
1

2

{
(� − �0D

⊤

�
WZ)⊤�−1

0
(� − �0D

⊤

�
WZ) + (� − �𝜌D

⊤

�
WZ)⊤�−1

0
(� − �𝜌D

⊤

�
WZ)

})

= exp
(
−
1

2

{
2�⊤�−1

0
� − 2�⊤(I + �

−1
0
�𝜌)D

⊤

�
WZ + Z⊤WZ + Z⊤W⊤D��𝜌�

−1
0
�𝜌D

⊤

�
WZ

})

= exp
(
−
1

2

{
2�⊤�−1
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⊤

�
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,

S1(�) = Z⊤WZ + Z⊤W⊤D��𝜌�
−1
0
�𝜌D

⊤

�
WZ.

(15)

P(�|m,Y) = ∫ P(�, �|m,Y)d�

∝ ∫ exp
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−
1
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−1
0
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⊤

�
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})
1
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⊤

�
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]
exp

{
−
1

2
S1(�)

}
exp(𝜅�⊤�0),

(16)P(�|m,Y) ∝ exp
(
1

4
Z⊤W⊤D��D

⊤

�
WZ

)
exp

{
−
1

2
S1(�)

}
exp(𝜅�⊤�0),
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 derived from expression (14).

2.3.2  MCMC Algorithm for the Posterior Sampling

In this subsection, we provide a detailed sampling scheme based on the conditional 
posterior derived in the previous subsection. First, we initialize the chain with the 
maximum likelihood estimates of the parameters (m, �, �)

of model (3) with representation (7) for the link g, where the tuning parameter � ≥ 0 
is optimized through the generalized cross-validation (GCV) criterion. We will then 
cycle through the following steps. 

1. Sample m from P(m|�, �,Y) in (11) given (�, �).
2. Sample � from P(�|m,Y) in (16) given m , using the Metropolis algorithm. Specif-

ically, given the current state �cur for � of the chain, a new value �new is accepted 
with the acceptance probability min{1, r} , where the Metropolis ratio r is given 
by 

 using the conditional posterior (16) given m . Here, we provide some more 
details on this Metropolis procedure.

• The proposal distribution for �new was taken to be von Mises–Fisher with 
concentration parameter � to be 𝜆prop > 0 and direction parameter given by 
the current value �cur . In the simulation example in the next section, we used 
�prop = 1000 , which yielded the acceptance probability of around 0.3∼0.7 for 
proposal �new , and the sampler appeared to explore the state space for � ade-
quately (examining the traceplots of typical MCMC chains did not show any 
peculiarity). We used the R package movMF [46] to generate random samples of 
� ∈ �

p−1 from von Mises–Fisher distributions.
• For the prior distribution of � in (9), we can choose � ≥ 0 (typically in the range 

of 0 ≤ 𝜅 < 700 [29]), where � = 0 corresponds to an uninformative prior, 
depending on the degree of confidence in the prior direction �0.

• � ≥ 0 in (10) is another unknown that controls the smoothness of the data-driven 
function g, which is crucial to avoid overfitting g. This will be selected via an 
empirical Bayes procedure using the GCV criterion, at each MCMC update.

3. Sample � from P(�|�,m,Y) in (17) given (�,m).

To obtain the estimated expected response given a new X = x and a treat-
ment condition a ∈ {0, 1} , we take the posterior mean of the expected 
response h−1(𝜂) = h−1

(
m⊤x + �̃(�⊤x)�̃a

)
 , based on the posterior sampler out-

put. In particular, we construct a treatment decision rule using the posterior 

(17)P(�|�,m,Y) = N(
1

2
�0(I + �

−1
0
�𝜌)D

⊤

�
WZ,

1

2
�0),

r =
P(�new|m,Y)

P(�cur|m,Y)
,
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distribution of �̃(�⊤x)(�̃1 − �̃0) . Specifically, we will use the posterior probability 
P
(
�̃(�⊤x)(�̃1 − �̃0) < 0 || D

)
 as the TBI(x) , which we will utilize to obtain a decision 

rule a∗(x) = �(TBI(x)>0.5) , using the probability threshold of 0.5.

3  Simulation Illustration

In this section, via a set of simulation experiments, we compare the performance 
of the proposed Bayesian single-index approach to modeling heterogeneous treat-
ment effect with an approach that relies on a Bayesian linear model. We replicate 
the experiment 100 times with sample sizes n = 500, 1000, 2000 . We use a cubic 
B-spline for representing g as in Sect.  2.2.2. The simulation code is available at 
https:// github. com/ syhyu npark/ bayes SIMML.

3.1  Simulation Setting

We independently generated the treatment indicators Ai ∈ {0, 1} from Bernoulli dis-
tribution with P(Ai = 1) = 0.5 and the vector of covariates Xi ∈ ℝ

p from the mean 
zero multivariate normal distribution with compound symmetry correlation (= 0.2) 
and the unit variances. Given (Xi,Ai) , we generated Yi ∼ Bernoulli(P(Yi = 1)) , 
where logit(P(Yi = 1)) = m(Xi) + g(Xi,Ai), with the following specifications of the 
functions m (either a “nonlinear” or “linear” X main effect) and g (either a “nonlin-
ear” or “linear” A-by-X interaction effect):

In (18), we set m = (1, 2, 3, 4, 0,… , 0)⊤ ∈ ℝ
p and � = (1, 0.5, 0.25, 0.125, 0,… , 0)⊤

∈ ℝ
p , where each vector was normalized to have unit norm. We considered the cases 

with p ∈ {5, 10} . Throughout the paper, we took m ∼ N(0, 52I) and an uninforma-
tive prior for � , i.e., set � = 0 in (9). As a comparison method, we used the follow-
ing logistic linear model: logit(P(Yi = 1)) = 𝛼 +m⊤Xi + (𝛽0 + �⊤Xi)(Ai − 0.5),

with the prior distributions, � ∼ t(df = 3) with location= 0 and scale= 8 , 
�0 ∼ N(0, 52) , and m, � ∼ N(0, 52I).

As an evaluation metric, we first consider the expected deviance measured on an 
independently generated test set (of size ñ = 104 ) to assess the accuracy of the mod-
els in predicting the new data, as defined by

(18)

m
�
X
i

�
=

�
1∕ 2 sin

�
�∕ 2mT

X
i

�
"nonlinear X main effect"

�∕ 8mT
X
i

"linear X main effect"

g
�
X
i
,A

i

�
=

⎧
⎪
⎨
⎪
⎩

2
�
exp

�
−
�
�TX

i
− 0.5

�2�
− 0.6

��
A
i
− 0.5

�
"nonlinear X-by-A interaction effect"

�
0.6�TX

i

��
A
i
− 0.5

�
"linear X-by-A interaction effect"

(19)Deviance(ỹ,�) = −
2

ñ

ñ∑

i=1

log

(
1

T

T∑

t=1

P(ỹi|�t)

)

https://github.com/syhyunpark/bayesSIMML
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(note that it is scaled by the testing set size ñ ), where T(= 2000) is the length of 
the Markov chain (after a burn-in of 2000) and �t is the tth set of sampled param-
eter values within the Markov chain obtained from the training set. Accordingly, 
1

T

∑T

t=1
P(ỹi��t) in (19) corresponds to the average posterior probability of ỹi , and 

the quantity (19) corresponds to a Bayesian version of the deviance, evaluated on 
the test set (of size ñ ). Smaller values of (19) are better, indicating greater average 
accuracy of the predictive model.

Furthermore, we report the expected outcome under the treatment regime a∗ , 
i.e., E[Y (a∗(X))] (which is called the “value” of the regime a∗ ) that is Monte Carlo 
approximated by ñ−1

∑ñ

i=1
ỹ
(a∗(x̃i))

i
 based on the test set of size ñ , where the ITR 

a∗(x) = �(TBI(x)>0.5) (see (6) for the definition of the TBI) which is trained based on 
the training set. We also report the proportion of correct decision (PCD), which is 
the proportion of the cases such that a∗(x̃i) (i = 1,… , ñ) match with the correct opti-
mal treatment assignment under the true data generation model.

Fig. 1  Results for the linear X main effect (m = “linear”) case, with varying 
g ∈ {“nonlinear”, “linear”} , p ∈ {5, 10} , and n ∈ {500, 1000, 2000} , comparing the performance of the 
proposed index model (red) with that of the logistic linear regression model (blue), with respect to 
the deviance (the first row; a smaller deviance is desired), the proportion of correct decisions (PCD) 
(the second row; a larger PCD is desired), and the “value” (the expected outcomes under ITRs) (the 
third row; a smaller value is desired)
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3.2  Simulation Results

Figure 1 below displays the results from the simulation experiments when we vary 
n ∈ {500, 1000, 2000} , p ∈ {5, 10} , and the form of the interaction effect compo-
nent g ∈ {“nonlinear”, “linear”} , for the linear X main effect (i.e., m(X) = 𝜋

8
m⊤X ) 

case. In Table 2 Appendix, as MCMC convergence diagnostic, we report the Gel-
man–Rubin potential scale reduction factor (PSRF) [47] computed for each scenario 
using the method of [48], which provides some assurance that the sampler has per-
formed reasonably. For the nonlinear A-by-X interaction effect scenarios (i.e., the 
gray panels in Fig. 1), the proposed index model that utilizes the flexible link func-
tion g clearly outperforms the logistic linear model which assumes a restricted lin-
ear model on the interaction term, with respect to the all three criteria (the devi-
ance, PCD and the expected outcome). When there is no nonlinearity in the A-by-X 
interaction effect term in the underlying model (i.e., the white panels in Fig. 1), not 
surprisingly the logistic linear model outperforms the index model. However, the 
contrast in the performance between the two models is relatively small, compared 
to that under the nonlinear A-by-X interaction. This suggests that, in the absence of 

Fig. 2  Results for the nonlinear X main effect (m = “nonlinear”) case, with varying 
g ∈ {“nonlinear”, “linear”} , p ∈ {5, 10} , and n ∈ {500, 1000, 2000} , comparing the performance of the 
proposed index model (red) with that of the logistic linear regression model (blue), with respect to the 
deviance (the first row; a smaller deviance is desired), the proportion of correct decisions (PCD) (the 
second row; a larger PCD is desired), and the “value” (the expected outcomes under ITRs) (the third row; 
a smaller value is desired)
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prior knowledge about the form of the A-by-X interaction effect, the more flexible 
index model that accommodates nonlinear treatment effect modifications (i.e., the 
nonlinear g term) can be a useful alternative to the linear model approach.

The results under the nonlinear X main effect case, i.e., m(X) = 1

2
sin

(
𝜋

2
m⊤Xi

)
 , 

are given in Fig. 2 and are quite similar to those from the linear X main effect case 
(i.e., the results present in Fig. 1), except that the expected deviance of the models 
(both the index model and the logistic linear model), which is a generalization of the 
mean-squared error that assesses the overall predictive performance, slightly increased 
due to the X main effect model misspecification. However, optimal ITRs are derived 
based only on the model’s A-by-X interaction effect terms. With respect to the PCD 
and the expected outcome under ITRs, the results under the linear X main effect and 
those under the nonlinear X main effect were close to each other, indicating that these 
models were quite robust to misspecification of the X main effect with respect to the 
ITR estimation performance. We also note that in both Figs. 1 and 2 there was rela-
tively large variability in the ITR estimation performance for the index model, espe-
cially when n = 500 . On the other hand, the variability in the overall predictive perfor-
mance metric (deviance) was comparable for the two approaches. This reflects the 
tendency that estimation of optimal ITRs is generally more challenging than making 
outcome predictions, as the difference (5) between two predictions has to be computed 
and its expected error will be invariably larger than for a single prediction.

4  Application

In this section, we illustrate the proposed model on data from a COVID-19 conva-
lescent plasma (CCP) study [39], a meta-analysis of pooled individual patient data 
from 8 randomized clinical trials. One of the goals of this study was to guide CCP 
treatment recommendations by providing an estimate of a differential treatment out-
come when a patient is treated with CCP vs. without CCP [49]. A larger differential 
in favor of CCP would indicate a more compelling reason for recommending CCP. 
In this context, we aim to use profiles of patients with COVID-19 associated with 
different benefits from CCP treatment, to optimize treatment decisions.

The study included 2369 hospitalized adults, not receiving mechanical ventila-
tion at randomization, enrolled from April 2020 through March 2021. We used 
only complete cases for this analysis. A total of 2287 patients were included, with 
a mean age of 60.3 (SD 15.2) years and 815(35.6%) women. One of the study’s 
primary outcomes was the binary variable indicating mechanical ventilation or 
death (hence Y = 1 indicates a bad outcome, whose probability we want to mini-
mize) at day 14 post-treatment, where 336 out of 2287 patients ( 14.7% ) expe-
rienced the Y = 1 case at day 14. The patients were randomized to be treated 
with either CCP (A = 1) (1190 patients, 52%) or control (A = 0) (i.e., standard 
of care; 1097 patients, 48%) . Pretreatment patient characteristics were collected 
at baseline. As in [49], in our application, the baseline variables used to model 
the covariates “main” effect, i.e., the component associated with the coefficient 
m in model (3), included age, sex, baseline symptom conditions, age-by-baseline 
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symptom conditions interaction, blood type, the indicators for history of diabetes, 
pulmonary and cardiovascular disease, and days since the symptoms onset. We 
also included the RCT-specific intercepts and the patients’ enrollment quarters as 
part of the covariates “main” effect component.

Since our goal in this analysis is to investigate the differential treatment effect 
explained by the baseline variables X , we will focus on reporting the estimation 
results of the heterogeneous treatment effect (HTE) term g(X⊤�,A) in model (3) and 
the corresponding treatment effect contrast Δ(x,�) in (5). The patient characteristics 
X included in the HTE term, along with the sample proportions, are given in the first 
column of Table 1. The posterior mean of the index coefficients � = (𝛽1,… , 𝛽7)

⊤ , 

Table 1  Pretreatment patient characteristics X and the corresponding estimated index coefficients � (and 
95% CrI)

∗ The reference level: hospitalized but no oxygen therapy required

Pretreatment characteristic x
j
 (sample prevalence, %) Index coefficient �

j
 [ 95% CrI]

Oxygen support by mask or nasal prongs∗ (1/0) (63%) 0.68 [0.50, 0.80]
Oxygen support by high flow∗ (1/0) (18%) 0.47 [0.16, 0.61]
Age (dichotomized, ≥ 67 ) (1/0) (35%) −0.13 [ −0.46,0.04]
Blood type (A or AB vs. O or B) (1/0) (37%) −0.31 [ −0.49, −0.16]
Cardiovascular disease (1/0) (42%) −0.24 [ −0.65,−0.06]
Diabetes (1/0) (34%) −0.26 [ −0.52, −0.08]
Pulmonary disease (1/0) (12%) 0.05 [ −0.16,0.22]

Fig. 3  The left panel displays the exponentiated version of the estimated individualized treatment effect 
and the posterior mean of Δ(x) = g(x⊤�,A = 1) − g(x⊤�,A = 0) in (5) (solid curve), along with the cor-
responding upper and lower 95% credible interval (CrI) (dashed curves), as a function of the posterior mean 
of x⊤� . The right panel also displays the expected odds ratio (CCP vs. control) (solid curve) and the cor-
responding 95% CrI (dashed curves), but the horizontal axis is now the treatment benefit index (TBI) (6), 
P(exp(Δ(x)) < 1 | D) , where exp(Δ(x)) represents the odds ratio, and the TBI probability is evaluated with 
respect to the posterior distribution of the parameters in Δ . The TBI provides a gradient of benefit that ranges 
from 0 to 1, with a higher value of the TBI indicating a greater benefit from the CCP treatment, compared to 
control. The observed values for the quantities on the horizontal axes are represented by the small blue ticks
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along with the corresponding 95% posterior credible intervals (CrI), are provided in 
the second column of Table 1. By examining the posterior CrI, the patient’s symp-
toms severity (oxygen support status) at baseline, blood type, a history of cardiovas-
cular disease, and a history of diabetes appear to be important predictors of HTE, as 
the CrI of the coefficients associated with these variables do not include 0.

In the first panel of Fig. 3, we display the exponentiated individualized treatment 
effect, exp(Δ(x,�)) , as a function of the single-index x⊤� . Specifically, the horizontal 
axis is the posterior mean of x⊤� (a point estimate), where the “observed” posterior 
mean values x⊤

i
� (i = 1,… , n) (n = 2287) computed from the posterior sample mean 

of � are represented by the small blue ticks along the axis. The uncertainty in the esti-
mation of the coefficient � (as well as that of the coefficient m ) is also accounted for 
in the credible bands in Fig. 3. For the sake of interpretability, we exponentiated the 
HTE estimate Δ(x,�) = g(x⊤�,A = 1) − g(x⊤�,A = 0) , so that the vertical axis in 
the panel represents the odds ratio (CCP vs. control) for a bad outcome (mechanical 
ventilation or death). An odds ratio of less than 1 indicates a superior CCP efficacy 
over the control treatment. As most of the observed values x⊤

i
� of the single-index 

fall below the line representing the odds ratio of 1, most of the patients are expected 
to benefit from CCP treatment, except those with the x⊤

i
� values greater than 0.45, 

in which the corresponding expected individualized odds ratios are greater than 1 
(about 28% of the observed patients). The U-shaped nonlinear relationship between 
the expected odds ratio and the single index of the model suggests that the use of the 
flexible link function g in (3) is to be preferred over a more restricted linear model for 
this HTE modeling.

Although the first panel of Fig. 3 displays an information about the relationship 
between the (exponentiated) individualized treatment effect exp(Δ(x)) (i.e., the indi-
vidualized odds ratio) and the posterior mean of the single index x⊤� , this relation-
ship is non-monotonic, which makes it difficult to construct a “gradient” of the treat-
ment benefit of A = 1 vs. A = 0 , as a function of the patient characteristics x . Thus, 
in the second panel of Fig. 3, we additionally display the individualized odds ratio 
exp(Δ(x)) , as a function of TBI(x) defined in (6), i.e., TBI(x) = P(exp(Δ(x)) < 1|D) , 
where the probability is evaluated with respect to the posterior distribution of the 
parameters involving Δ . As a probability, TBI(x) ranges from 0 to 1, where larger 
values are associated with larger CCP benefit. For example, patients with a large 
value of TBI(x) (i.e., TBI scores near 1) were expected to experience large, clinically 
meaningful benefits from CCP.

The second panel of Fig.  3 displays a monotonically decreasing trend of the 
expected odds ratio (an increasing CCP benefit), as the TBI score increases from 
0 to 1. Some portions of the expected odds ratio as well as the corresponding 95% 
CrI exceed 1 for very small TBI values (near 0), suggesting the possibility of harm 
from CCP as the TBI approaches 0, whereas the TBI values close to 1 indicate a 
substantial benefit from the CCP treatment over the control treatment. We can use 
the TBI scores to stratify patients according to their predicted treatment benefit 
levels, by setting the treatment decision rule â∗(x) = �(TBI(x)>0.5) ∈ {0, 1}.
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To evaluate the performance of the treatment decision rule â∗(x) , we randomly 
split the data with a ratio of 2:1 into a training set and a testing set (of size ñ) , rep-
licated 100 times, each time obtaining â∗(x) based on the training set, and the cor-

responding “value” V(â∗) = E[Y (â∗(X))] by an inverse probability weighted estima-

tor [50] V̂(â∗) =
∑ñ

i=1
Yi�(Ai=â∗(Xi ))∑ñ

i=1
�(Ai=â

∗(Xi ))

 computed based on the testing set (of size ñ).

For comparison, we also include two naive rules: treating all patients with Control 
(“All Control”) and treating all patients with CCP (“All CCP”), each regardless of the 
individual patients’ characteristics x , in addition to the decision rules based on the Bayes-
ian linear logistic model which was compared with the proposed index model in Sect. 3. 
The resulting boxplots obtained from the 100 random splits are illustrated in Fig. 4.

The results in Fig.  4 demonstrate that the index model and the logistic linear 
regression perform at a similar level for this dataset, while showing a clear advan-
tage over the näive rules of giving everyone CCP or giving everyone the control 
treatment: the averaged proportion of patients with the undesirable outcome (i.e., 
Y = 1 ) was considerably less for the two regression approaches than the two näive 
rules. This suggests that accounting for patient characteristics can help optimizing 
treatment decisions. Although some of the nonlinearities in the association between 
the treatment effect and patient characteristics x is captured by the model-implied 
odds ratio displayed in the first panel of Fig. 3, for this dataset, the simpler linear 
model appears to perform nearly as well as the index model due to its model parsi-
mony. However, as demonstrated in Sect. 3, the more flexible index model may be 
preferable to the linear model, as it allows for discovering some key nonlinearities in 
modeling heterogeneous treatment effects.

Fig. 4  Boxplots of “value,” obtained from 100 randomly split testing sets. A smaller “value” is desirable
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5  Discussion

The idea in the Bayesian estimation approach of [29] was to treat the link func-
tion g as another unknown and approximate it by a linear combination of B-spline 
basis functions. In this article, to estimate heterogeneous treatment effect using 
a flexible link function, we used the adjusted responses and weights associated 
with the iteratively re-weighted least squares (IWLS) algorithm in the quadratic 
approximation of the log likelihood, for each MCMC sampler. The approximation 
under the IWLS framework and the specific prior choice (10) allows us to ana-
lytically integrate � out of the approximated posterior (13), which simplifies the 
sampling procedure for � . Although the sampling was done using approximated 
conditional posteriors, this approach appears to work reasonably well.

This paper focused on the context of a randomized clinical trial where the treat-
ment Ai ∈ {0, 1} is randomized independently of pretreatment characteristics Xi . 
However, the method can be potentially extended to the case where the treatment 
assignment depends on Xi . To estimate individual treatment effects with observa-
tional or non-fully randomized data, we can take a “propensity method” [17, 40, see, 
e.g.,] upon taking an appropriate reparametrization of the proposed model, which 
we describe below for a more general context of k treatment conditions, in which 
the treatment Ai takes a value a ∈ {1,… , k} with probability (i.e., propensity score) 
P(Ai = a|Xi) = �a(Xi) (a = 1,… , k) . Let a = 1 be the reference (control) treatment.

For each fixed � , the condition (4) implies E[g(X⊤

i
�,Ai)�Xi] =

∑k

a=1
g(X⊤

i
�, a)

�
a
(X

i
) = 0 or equivalently, g(X⊤

i
�, a = 1) = −

∑k

a=1
g(X⊤

i
�, a)

𝜋a(Xi)

𝜋1(Xi)
. Given this rep-

resentation for g(X⊤

i
�, a = 1) , we can reparametrize the canonical parameter of 

model (3), that is, 𝜂i(Xi,Ai) = m⊤Xi +
∑k

a=1
�(Ai=a)

g(X⊤

i
�, a) , by

where wa(Ai,Xi) = �(Ai=a)
−

�a(Xi)

�1(Xi)
�(Ai=1)

 . This parametrization is an unconstrained 
formulation of model (3) without the constraint (4), where the propensity score 
�a(Xi) (a = 1,… , k) is incorporated through the subject i- and treatment a-specific 
weight wa(Ai,Xi) in the formulation. In model (20), the interaction term 
g∗(Xi,Ai) ∶=

∑k

a=2
g(X⊤

i
�, a)wa(Ai,Xi) still satisfies the condition of the form (4), 

since E[wa(Ai,Xi)|Xi] = 0 , indicating that E[g∗(Xi,Ai))|Xi] = 0.
In the estimation, as in Sect. 2.2.2 for the binary treatment condition Ai ∈ {0, 1} , 

we can proceed as follows for the general k treatment conditions with Ai ∈ {1,… , k} 
and also in the context of an observational or a non-fully randomized study. We can 

(20)

𝜂i(Xi,Ai) = m⊤Xi +

k∑

a=2

�(Ai=a)
g(X⊤

i
�, a) − �(Ai=1)

k∑

a=2

g(X⊤

i
�, a)

𝜋a(Xi)

𝜋1(Xi)

= m⊤Xi +

k∑

a=2

g(X⊤

i
�, a)wa(Ai,Xi),
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define the n × L(k − 1) design matrix D� = (D�,2;… ;D�,k) , where each element (the 
n × L matrix) D�,a (a = 2,… , k) that is specific to each treatment condition A = a 
(a = 2,… , k) denotes the evaluation matrix of the basis �̃(⋅) on {�⊤Xi}

n
i=1

 multi-
plied by the subject i and treatment condition a-specific weight wia = wa(Ai,Xi)(the 
weight is defined on the second line of (20)), so that its ith row corresponds to the 
1 × L vector, wia�̃(�⊤Xi)

⊤ , with the weight wia incorporating the pre-estimated treat-
ment propensity score �a(X) (a = 1,… , k) . The spline coefficient vector � ∈ ℝ

L(k−1) 
associated with the design matrix D� can be introduced, which yields the repre-
sentation g = D�� ∈ ℝ

n as in Sect.  2.2.2, and the same estimation procedure of 
Sect. 2.2.3 and 2.3 can be employed to conduct posterior inference.

Future work will extend the model to accommodate multiple treatment outcomes 
to allow for borrowing of strength between the available outcomes in modeling het-
erogeneous treatment effects.

Appendix

As MCMC convergence diagnostic for the simulation example in Sect 3, we report 
the Gelman–Rubin potential scale reduction factor (PSRF) computed for each sce-
nario (Table 2) .
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