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ABSTRACT

This paper develops a Bayesian model with a flexible link function connecting a binary treatment
response to a linear combination of covariates, and a treatment indicator and the interaction between
the two. Generalized linear models allowing data-driven link functions are often called "single-index
models” and are among popular semi-parametric modeling methods. In this paper, we focus on
modeling heterogeneous treatment effects, with the goal of developing a treatment benefit index (TBI)
incorporating prior information from historical data. The model makes inference on a composite
moderator of treatment effects, summarizing the effect of the predictors within a single variable
through a linear projection of the predictors. This treatment benefit index can be useful for stratifying
patients according to their predicted treatment benefit levels and can be especially useful for precision
health applications. The proposed method is applied to a COVID-19 treatment study.

Keywords Bayesian single index models · Heterogeneous treatment effects · Precision medicine

1 Introduction

In precision medicine, a critical concern is to characterize individuals’ heterogeneity in treatment responses in order to
enable individual-specific treatment decisions to be made [Murphy, 2003, Robins, 2004, Collins and Varmus, 2015].
Tailoring medical treatments according to individuals’ characteristics requires inferring individual-level treatment
effects (ITE) (as opposed to inferring the treatment effects on average across the entire population). Then, developing
of an individualized treatment rule (ITR) [see, e.g., Qian and Murphy, 2011, Lu et al., 2011, Tian et al., 2014, Shi et al.,
2016, Jeng et al., 2018, Zhao et al., 2012, 2015, Song et al., 2015, Laber and Zhao, 2015, Laber and Staicu, 2018, Zhao
et al., 2019] naturally follows from drawing inferences about the ITE. As an alternative route to developing an ITR,
direct optimization of the population average over a class of ITRs [see, e.g., Zhao et al., 2012, 2015, Liu et al., 2018,
Xie et al., 2022] may be considered.

Substantial developments have been made in the statistical methodology on the ITE estimation [see, e.g., review
provided in Caron et al., 2022]. Examples within the frequentist paradigm include R-learner [Nie and Wager, 2021],
kernel-based multi-task learner [Alaa and van der Schaar, 2017], neural-networks [Shalit et al., 2017], tree-based
ensembles [Wager and Athey, 2018] and semi-parametric regression [Guo et al., 2022], among many others. In the
Bayesian paradigm, one prominent approach is the causal Bayesian additive regression trees (BART) [see, e.g., Hahn
et al., 2020, Klausch et al., 2018, Murray et al., 2018, Logan et al., 2019] among others. Although there are many
statistical learning methods that exhibit good performance in capturing complex nonlinear relationship for individual
treatment effects, in this paper, we focus on the Bayesian estimation of single-index regression models for ITE, as there
has been no specific work designed to model the heterogeneous treatment effects using a single-index model in the
Bayesian paradigm, albeit the usefulness that arises from the simplicity in its model formulation.

A single-index model [see, e.g., Brillinger, 1982, Stoker, 1986] is one of the most popular semi-parametric models
and provides an efficient way of dealing with multivariate nonparametric regression. Single-index models expand the
scope of generalized linear models through a flexible data-driven link function. The model summarizes the effect of the
predictors within a single variable through a linear projection of the predictors, called the (single-)index. In the context
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of modeling heterogeneous treatment effects, such an index corresponds to a composite moderator of treatment effects,
and we will demonstrate that such an index is useful for optimizing treatment decisions and the approach provides a
natural way to summarize uncertainties associated with this composite moderator, through its posterior distribution.

There are broadly two lines of research on Bayesian single-index models. One approach employs a spline-based
representation of the link [Antoniadis et al., 2004, Poon and Wang, 2013, 2014, Wang, 2009, 2018]. The other line of
research employs a Gaussian process-type representation of the link [Choi et al., 2011, Gramacy and Lian, 2012, Yu
et al., 2019, Dhara et al., 2020, Liu and Liang, 2022], where the unknown link function is assumed to be a Gaussian
process a priori. In this article, we take the former spline-based approach as it allows us to easily incorporate an
identifiability constraint on the link function used to model the heterogeneous treatment effect term.

In this paper, we consider a treatment variable A taking a value in {0, 1} with the associated randomization probabilities
{π0, π1} in the context of randomized clinical trials (RCTs), with the corresponding potential outcomes denoted as
{Y (0), Y (1)}. Depending on A, the observed outcome is Y = (1−A)Y (0) +AY (1), where the outcome Y is assumed
to be a member of the exponential family. Specifically, we focus on a binary outcome Y ∈ {0, 1}, where we assume,
without loss of generality, that the value of Y = 0 is desired so that Y = 1 indicates a bad outcome (e.g., death). On
the population level, this means that a small value of h(E[Y ]) is desired, where h(·) denotes the canonical link of the
assumed exponential family distribution. For the binary outcome considered here, h(·) is the logit function.

The proposed single-index approach to modeling heterogeneous treatment effects was motivated by an application to a
COVID-19 convalescent plasma (CCP) treatment study [Troxel et al., 2022]. One of the primary goals of this RCT was
to guide CCP treatment recommendations by providing an estimate of a differential treatment outcome when a patient
is treated with CCP vs. without CCP, where a larger differential in favor of CCP would indicate a more compelling
reason for recommending CCP. The estimated index, defined as a linear combination of covariatesX , which is part
of the heterogeneous treatment effect term of the model, can be used to discover profiles of patients with COVID-19
associated with different benefit from CCP treatment. Specifically, the covariatesX ∈ Rp are observed pretreatment
measurements and predictors of {Y (0), Y (1)}. Our goal is to utilize the information in X to develop an ITR that
optimizes the value of h(E[Y ]) for future patients.

2 Method

2.1 Optimal individualized treatment rules

In this subsection, we define an optimal ITR. The Bayes decision a∗ : x 7→ {0, 1} minimizes, over treatment decision
(action) a ∈ {0, 1}, the patient-specific posterior expected loss for a patient with pretreatment characteristicX = x.
Let us define the loss function for making treatment decision a as:

L(a,θ,x) = h(E[Y (a)|θ,x]), (1)
where θ represents the model parameters characterizing the relationship between the potential treatment outcomes
(Y (0), Y (1)) and predictorsX . In (1), E[Y (a)|θ,x] = (1− a)E[Y (0)|θ,x] + aE[Y (1)|θ,x] is the expected outcome
under a particular treatment assignment a. Let us denote the observed clinical trial data as D consisting of triplets
Di = {Xi, Ai, Yi} with i ∈ {1, . . . , n}, whereXi ∈ Rp is a set of observed pretreatment covariates and Yi ∈ {0, 1} is
an observed outcome for individual i.

Viewing the loss function L(a,θ,x) in (1) as a function of treatment assignment a given a particular x, the optimal
Bayes decision a∗(x) will minimize the posterior expected loss given x, i.e.,

a∗(x) = arg min
a∈{0,1}

Eθ|D,x[L(a,θ,x)],

where the expectation is taken with respect to the posterior distribution of θ given the observed data D. In particular, if
we define the loss contrast ∆(θ,x) := L(a = 1,θ,x)− L(a = 0,θ,x), then the above optimal Bayes decision a∗(x)
is equivalent to:

a∗(x) = I(Eθ|D,x[∆(θ,x)]<0) (2)
(where I(·) is the indicator function), which we define as the optimal ITR.

We will utilize the following standard causal inference assumptions [see, e.g., Imbens and Rubin, 2015, Rubin, 2005]:
1) no unmeasured confoundedness, Y (a) ⊥ A given X = x, and 2) positivity, 0 < P (A = 1|X = x) < 1, which
together imply h(E[Y (a)|θ,X = x]) = h(E[Y |A = a,θ,X = x]), and 3) stable unit treatment value assumption
(SUTVA). Under these assumptions, we can write the loss contrast function ∆(θ,x) in (2) as: ∆(θ,x) = h{E[Y |A =
1,θ,x]} − h{E[Y |A = 0,θ,x]}. Therefore, we can construct the optimal Bayes decision (2) based on posterior
inference on the canonical parameter h{E[Y |A,θ,X]} of the exponential family response Y . In the following
subsection, we will specify our model for the distributions of (Y |A,θ,X) and θ, to estimate the optimal ITR (2).
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2.2 Model and prior specification

2.2.1 Model

Let Y = (Y1, . . . , Yn)> be a vector of the treatment outcomes, with each Yi independently following a specific
exponential family distribution with density

f(Yi|ηi, φ) = exp
{
φ−1[Yiηi − b(ηi)] + c(Yi, φ)

}
ηi = X>i m+ g(X>i β, Ai),

(3)

where the unknown parameters (which we collectively denote as θ) will be estimated in a Bayesian framework. In (3),
b(·) and c(·) are known functions specific to the given member of the exponential family, whereas g(·, ·) is an unknown
flexible function, and φ > 0 is an unknown dispersion parameter (φ = 1 specializes to a one-parameter exponential
family distribution). Throughout we will drop φ from (3) because it is fixed at unity in our motivating dataset that has
Bernoulli responses.

The canonical parameter η ∈ R in (3) of the response distribution is related to the treatment decision loss function
L(a,θ,x) in (1), through η(θ,x, a) = h(E[Y |θ,x, a]) = h(E[Y (a)|θ,x]) = L(a,θ,x), under the standard causal
inference assumptions.

Within the specification of η in model (3), the first termX>m represents the pretreatment covariates’ “main” effect,
whereas the second term g(X>β, A) is the X-by-A interaction effect. This interaction effect is characterized by
an unspecified treatment a-specific smooth function g(u, a) (a = 0, 1) which is a function of a linear projection
u = X>β ∈ R. The projection vector β ∈ Rp is subject to ‖β‖ = 1, i.e., restricted to β ∈ Sp−1, where Sp−1 is the
p− 1 dimensional unit sphere, and the single-indexX>β provides a dimension reduction specifically for theX-by-A
interaction effect. In (3), for anyX and β, we shall impose the following identifiability condition for the component g

E[g(X>β, A)|X] = 0, (4)

which separates the component g(X>β, A) of interest (the “prescriptive” term representing the heterogeneous treatment
effect), from the componentX>m (the “prognostic” term that does not represent the heterogeneous treatment effect).
In general, the covariates, X , represented in the terms g(X>β, A) and X>m in (3) are not necessarily the same
variates, but for notational simplicity, the same notation for these sets of covariates was employed. As another abuse
of notation for simplicity, the treatment A’s main effect, which can be represented by β0A ∈ R for some unknown
β0 ∈ R, will be estimated, together with the model intercept, as part of the componentX>m in (3).

Remark 2.1 Model (3) with the identifiability condition (4) is more suitable to conduct a posterior inference for
heterogeneous treatment effects than the model with η = X>m+ g(X>β)A, because this particular parametrization
(3) is invariant of the choice of coding of A. In the latter model, the choice of the treatment A coding can meaningfully
impact posterior inferences because the two effectsX>m and g(X>β)A can alias each another, particularly when
the same setX enter into the both terms. Under condition (4), the effect captured by the prognostic term,X>m, and
the prescriptive term, g(X>β, A), can be distinguished regardless of treatment A coding.

For an individual with pretreatment characteristics x, the loss contrast ∆(θ,x) in (2) under model (3) is

∆(θ,x) = g(x>β, A = 1)− g(x>β, A = 0). (5)

The loss contrast (3) indicates that only the parameters g and β (and not m and φ) in model (3) are used to specify
the ITR (2), hence g and β correspond to the “signal” parameters of interest. Given definition (2), we will define a
“treatment benefit index” (TBI) in terms of a (posterior) probability,

TBI(x) := P (∆(θ,x) < 0|D) ∈ [0, 1], (6)

that is, the probability of the (active) treatment A = 1 providing a greater benefit than the treatment A = 0 (for a patient
with pretreatment characteristic x), in which the probability is evaluated with respect to the posterior distribution of θ.
The optimal Bayes decision a∗(x) in (2) is then represented by I(TBI(x)>0.5). Since a large value of (6) indicates a large
expected “benefit” of taking the active treatment A = 1 vs. control A = 0, the TBI(x) in (6) constructs a “gradient” of
the active treatment’s benefit that ranges from 0 to 1, as a function of patient characteristic x. Furthermore, for each
X = x, we can obtain a posterior distribution of the treatment a-specific expected outcome h−1{x>m+ g(x>β, a)}
based on the posterior distribution of the parameters θ = {m, g,β}.
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2.2.2 Representation of the link function g

Following Antoniadis et al. [2004], we will use a cubic B-spline basis to represent the flexible function g(·, a) of (3).
Using B-splines is appealing because the basis functions are strictly local, as each basis function is only non-zero
over the intervals between 5 adjacent knots [Eilers and Marx, 1996]. Using splines allows us to easily incorporate the
constraint (4) on the function g, as we describe shortly.

For each fixed β, the function g is represented as:

g(β>xi, ai) = ψ̃(β>xi)
>γ̃ai (i = 1, . . . , n) (7)

for some fixed L-dimensional basis ψ̃(·) ∈ RL (e.g., B-spline basis on evenly-spaced knots on a bounded range of
{β>xi}ni=1) and a set of unknown treatment a-specific spline coefficients γ̃a ∈ RL (a = 0, 1). In our simulation
illustration and in the application, we used a cubic B-spline basis with L = 4 + [n1/5.5] where [n1/5.5] denotes the
integer part of n1/5.5, as recommended by Wang and Yang [2009].

Given representation (7) for g, the identifiability constraint (4) is implied by the linear constraint:
π0γ̃0 + π1γ̃1 = πγ̃ = 0, (8)

where π = [π0IL; π1IL] with πa = P (A = a) (i.e., the randomization probabilities) is the L× 2L matrix (in which
IL denotes the L× L identity matrix) and γ̃ = (γ̃>0 , γ̃

>
1 ) ∈ R2L, an unknown basis coefficient vector.

To represent (7) in matrix notation, given β, let the n× L matrices D̃β,a (a = 0, 1) denote the evaluation matrices of
the basis ψ̃(·) on {β>xi}ni=1, specific to the treatment A = a (a = 0, 1), whose ith row is the 1×L vector ψ̃(β>xi)

>

if Ai = a, and a row of zeros 0>L if Ai 6= a. Then, the column-wise concatenation of the design matrices D̃β,a
(a = 0, 1), i.e., the n× 2L matrix D̃β = [D̃β,0; D̃β,1], defines the model matrix associated with γ̃ ∈ R2L. Then, we
can represent the function g in (7) evaluated on the sample data, by the length-n vector: g = D̃βγ̃ ∈ Rn.

The linear constraint (8) on γ̃ can be conveniently absorbed into the model matrix D̃β by reparametrization, as we
describe next. We can find a 2L × L basis matrix Q (that spans the null space of the linear constraint (8)), such
that if we set γ̃ = Qγ for any arbitrary vector γ ∈ RL, then the resulting vector γ̃ ∈ R2L automatically satisfies
the constraint (8). Such a basis matrix Q can be constructed by a QR decomposition of the matrix π> in (8). Then
representation g = D̃βγ̃ can be reparametrized, in terms of the unconstrained vector γ ∈ RL, by replacing D̃β with
the reparametrized model matrixDβ = D̃βQ yielding the representation g = Dβγ.

Once we have an inferential procedure on γ, we can also consider inference on the transformed parameter γ̃ = Qγ,
from which we can make inference on the treatment a-specific functions g(β>·, a) = ψ̃(β>·)>γ̃a (a = 0, 1).

We note that ψ̃(·) ∈ RL in (7) defines a system of functions specifically chosen to be used as building blocks to
represent a (smooth, as implied by penalized splines) link function g(·, a) for each treatment condition a. If a different
basis function is used to represent the link function, we may have a different performance. We may need to identify a
best suitable basis for the data which depend on the underlying heterogeneous treatment effect (i.e., the underlying
log odds ratio function). For example, if there is a reason to expect that the log odds ratio function (5) is a jagged (or,
less likely, a cyclic) function over the index x>β, then a wavelet [e.g., Wand and Ormerod, 2011] (or Fourier [e.g.,
Lenk, 2002]) basis might be more suitable. Although the associated basis coefficient vector, γ̃, will still be subject
to the identifiability constraint (8) for a different basis system, a specifically tailored prior and penalization would be
more appropriate, for example, (L1-type) Laplace-Zero prior with some hyperparameter determining the sparsity basis
[Wand and Ormerod, 2011].

2.2.3 Prior specification

How we specify priors for β,m and γ associated with model (3) is given in this subsection.

• For the distribution of β ∈ Sp−1, we will use the von Mises-Fisher with concentration parameter κ > 0 and
modal parameter β0 ∈ Sp−1,

P (β) ∝ exp(κβ>β0), (9)
which is a probability distribution for β on the (p− 1)-unit-sphere in Rp.

• We will usem ∼ N(m0,R), for some vectorm0 ∈ Rp and p× p symmetric positive definite matrixR.
• Since the domain of the function g in (3) depends on β, the prior on g will depend on β. Conditioning on β,

following Antoniadis et al. [2004], we will use data-dependent prior for γ ∈ RL,

γ|β ∼ N(ΣρD
>
βWZ, Σ0), (10)
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where
Σρ := (D>βWDβ + ρI)−1,

and Σ0 := (D>βWDβ)−1 which corresponds to a special case of Σρ at ρ = 0. The prior (10) is a Zellner’s
g-prior, that has the same dispersion matrix as a weighted least squares estimator defined based on the vector
of adjusted responses Z and the matrix of weightsW , which are specified in the next subsection. In the prior
(10), ρ ≥ 0 is a hyperparameter which will be selected via an empirical Bayes procedure with the generalized
cross-validation (GCV), as in Antoniadis et al. [2004]. An advantage of using the prior (10) is that it allows us
to analytically integrate γ out of the joint posterior P (β,γ|m,Y ), facilitating the Gibbs sampling of β.

2.3 Posterior computation

To conduct posterior inference on (m,β,γ), we will simulate samples from the joint posterior P (m,β,γ|Y ) (where
we use Y = (y1, . . . , yn)> to denote the observed treatment outcomes). Since it is difficult to draw samples directly
from this joint posterior distribution, we will use a Metropolis-Within-Gibbs algorithm. The Gibbs algorithm will iterate
between the following two Steps: Step 1) samplem from P (m|β,γ,Y ); Step 2) sample (β,γ) from P (β,γ|m,Y ).
Specifically, in Step 2, since the joint conditional posterior P (β,γ|m,Y ) does not have a convenient form to directly
sample from, we will employ a Metropolis-Hastings step.

2.3.1 Conditional posteriors

1. Derivation of (m|β,γ,Y ). For fixed β and γ, we will quadratically approximate the log likelihood function
of m at its mode, which we denote by m̌. To find the mode m̌, we will use a Fisher scoring, iteratively
updating the center of the quadratic approximation. For fixed β and γ, at the convergence of the Fisher
scoring, we define the adjusted response vector Ž := (ž1, . . . , žn)> ∈ Rn where ži := h′(µ̌i)(yi − µ̌i) + η̌i,
in which η̌i = m̌>xi +ψ(β>xi)

>γ and µ̌i = h−1(η̌i), and the n× n weight matrix W̌ = diag(w̌i), where
w̌i = 1/{(h′(µ̌i))2V (µ̌i)}, in which V (µ̌i) = µ̌i(1− µ̌i). Given each β and γ, the negative log likelihood
of m is approximately represented in terms of a weighted least squares (WLS) objective function (up to a
constant of proportionality),

n∑
i=1

w̌i(ži −m>xi)2 = (Ž −Xm)>W̌ (Ž −Xm).

Given the priorm ∼ N(m0,R) and the above approximated negative log likelihood, the conditional posterior
form is given by:

P (m|β,γ,Y ) = N
(
(R−1 +X>W̌X)−1(R−1m0 +X>W̌ Ž), (R−1 +X>W̌X)−1

)
. (11)

2. Derivation of (β,γ|m,Y ). Given the joint conditional posterior P (β,γ|m,Y ) =
P (β|m,Y )P (γ|β,m,Y ), we will first sample β from P (β|m,Y ) and then γ from P (γ|β,m,Y ).
Specifically, following Antoniadis et al. [2004], we will use a Metropolis-Hastings algorithm to sample β
from p(β|m,Y ). However, this approach employed in Antoniadis et al. [2004] cannot be directly applied to
our settings, due to the non-Gaussian likelihood. Thus, we will perform a quadratic approximation of the
negative log likelihood function of γ at its mode, which we denote by γ̌. To find γ̌, as in Step 1, we will
conduct a Fisher scoring. For each fixed β and m, this quadratic approximation at the convergence of the
Fisher scoring is summarized in the form of the WLS objective function (up to a constant of proportionality),

n∑
i=1

wi(zi −ψ(β>xi)
>γ)2 = (Z −Dβγ)>W (Z −Dβγ), (12)

as a function of γ, in which Z := (z1, . . . , zn)> ∈ Rn is the adjusted response vector with zi := h′(µ̂i)(yi −
µ̂i)+η̂i obtained at the convergence, where η̂i = m>xi+ψ(β>xi)

>γ̌ and µ̂i = h−1(η̂i), andW = diag(wi)
is the n× n weight matrix with wi = 1/{(h′(µ̂i))2V (µ̂i)}. Given the quadratic approximation (12), we can
write the joint conditional posterior P (β,γ|m,Y ):

P (β,γ|m,Y ) = P (Y |γ,β,m)P (γ|β,m)P (β)

∝ exp{−1

2
(Z −Dβγ)>W (Z −Dβγ)} P (γ|β,m) exp(κβ>β0).

(13)

5
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Given the conditional prior P (γ|β,m) in (10), we can write the terms involving γ in (13) as:

∝ exp

(
−1

2

{
(Z −Dβγ)>W (Z −Dβγ) + (γ −ΣρD

>
βWZ)>Σ−1

0 (γ −ΣρD
>
βWZ)

})
∝ exp

(
−1

2

{
(γ −Σ0D

>
βWZ)>Σ−1

0 (γ −Σ0D
>
βWZ) + (γ −ΣρD

>
βWZ)>Σ−1

0 (γ −ΣρD
>
βWZ)

})
= exp

(
−1

2

{
2γ>Σ−1

0 γ − 2γ>(I + Σ−1
0 Σρ)D

>
βWZ +Z>WZ +Z>W>DβΣρΣ

−1
0 ΣρD

>
βWZ

})
= exp

(
−1

2

{
2γ>Σ−1

0 γ − 2γ>(I + Σ−1
0 Σρ)D

>
βWZ + S1(β)

})
,

(14)
where

S1(β) = Z>WZ +Z>W>DβΣρΣ
−1
0 ΣρD

>
βWZ.

Specifically, given (14), we can analytically integrate γ out of the joint conditional P (β,γ|m,Y ) in (13),
which yields

P (β|m,Y ) =

∫
P (β,γ|m,Y )dγ

∝
∫

exp

(
−1

2

{
2γ>Σ−1

0 γ − 2γ>(I + Σ−1
0 Σρ)D

>
βWZ + S1(β)

}) 1

|Σ0|1/2
exp(κβ>β0)dγ

∝ ϕγ̃
[
(I + Σ−1

0 Σρ)D
>
βWZ

]
exp

{
−1

2
S1(β)

}
exp(κβ>β0),

(15)
where ϕγ̃

[
(I + Σ−1

0 Σρ)D
>
βWZ

]
is the moment generating function (MGF) of the variate γ̃ ∼ N (0,Σ0/2)

evaluated at (I + Σ−1
0 Σρ)D

>
βWZ. The familiar closed-form expression of the Gaussian MGF allows us to

write the last line of (15) as:

P (β|m,Y ) ∝ exp

(
1

4
Z>W>DβΛD>βWZ

)
exp

{
−1

2
S1(β)

}
exp(κβ>β0), (16)

where Λ = (I + ΣρΣ
−1
0 )Σ0(I + ΣρΣ

−1
0 ). The expression (16) provides a closed form for the approximated

P (β|m,Y ) up to a constant of proportionality, which we will use to conduct a random walk Metropolis
Markov chain Monte Carlo (MCMC) algorithm. The MCMC algorithm to sample (β|m,Y ) based on (16) is
described in the next subsection. Given eachm and β, we can sample γ from P (γ|β,m,Y ),

P (γ|β,m,Y ) = N( 1
2Σ0(I + Σ−1

0 Σρ)D
>
βWZ, 1

2Σ0), (17)

derived from expression (14).

2.3.2 MCMC algorithm for the posterior sampling

In this subsection, we provide a detailed sampling scheme based on the conditional posterior derived in the previous
subsection. First, we initialize the chain with the maximum likelihood estimates of the parameters (m,β,γ) of model
(3) with representation (7) for the link g, where the tuning parameter ρ ≥ 0 is optimized through the generalized
cross-validation (GCV) criterion. We will then cycle through the following steps.

1. Samplem from P (m|β,γ,Y ) in (11) given (β,γ).
2. Sample β from P (β|m,Y ) in (16) givenm, using the Metropolis algorithm. Specifically, given the current

state βcur for β of the chain, a new value βnew is accepted with the acceptance probability min{1, r}, where
the Metropolis ratio r is given by:

r =
P (βnew|m,Y )

P (βcur|m,Y )
,

using the conditional posterior (16) givenm. Here, we provide some more details on this Metropolis procedure.

• The proposal distribution for βnew was taken to be von Mises-Fisher with concentration parameter κ
to be λprop > 0 and direction parameter given by the current value βcur. In the simulation example in
the next section, we used λprop = 1000, which yielded the acceptance probability of around 0.3∼0.7

6
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for proposal βnew, and the sampler appeared to explore the state space for β adequately (examining the
traceplots of typical MCMC chains did not show any peculiarity). We used the R package movMF [Hornik
and Grun, 2022] to generate random samples of β ∈ Sp−1 from von Mises-Fisher distributions.

• For the prior distribution of β in (9), we can choose κ ≥ 0 (typically in the range of 0 ≤ κ < 700
[Antoniadis et al., 2004]) where κ = 0 corresponds to an uninformative prior, depending on the degree of
confidence in the prior direction β0.

• ρ ≥ 0 in (10) is another unknown that controls the smoothness of the data-driven function g, which is
crucial to avoid overfitting g. This will be selected via an empirical Bayes procedure using the GCV
criterion, at each MCMC update.

3. Sample γ from P (γ|β,m,Y ) in (17) given (β,m).

To obtain the estimated expected response given a new X = x and a treatment condition a ∈ {0, 1}, we take the
posterior mean of the expected response h−1 (η) = h−1

(
m>x+ ψ̃(β>x)γ̃a

)
, based on the posterior sampler output.

In particular, we construct a treatment decision rule using the posterior distribution of ψ̃(β>x)(γ̃1 − γ̃0). Specifically,
we will use the posterior probability P

(
ψ̃(β>x)(γ̃1 − γ̃0) < 0

∣∣ D) as the TBI(x), which we will utilize to obtain a
decision rule a∗(x) = I(TBI(x)>0.5), using the probability threshold of 0.5.

3 Simulation illustration

In this section, via a set of simulation experiments, we compare the performance of the proposed Bayesian single-index
approach to modeling heterogeneous treatment effect with an approach that relies on a Bayesian linear model. We
replicate the experiment 100 times with sample sizes n = 500, 1000, 2000. We use a cubic B-spline for representing g
as in Section 2.2.2. The simulation code is available at https://github.com/syhyunpark/bayesSIMML.

3.1 Simulation setting

We independently generated the treatment indicators Ai ∈ {0, 1} from Bernoulli distribution with P (Ai = 1) = 0.5
and the vector of covariatesXi ∈ Rp from the mean zero multivariate normal distribution with compound symmetry
correlation (= 0.2) and the unit variances. Given (Xi, Ai), we generated Yi ∼ Bernoulli(P (Yi = 1)), where
logit(P (Yi = 1)) = m(Xi) + g(Xi, Ai), with the following specifications of the functions m (either a “nonlinear” or
“linear”X main effect) and g (either a “nonlinear” or “linear” A-by-X interaction effect) :

m(Xi) =

{
1
2 sin

(
π
2m

>Xi

)
“nonlinearX main effect”

π
8m

>Xi “linearX main effect”

g(Xi, Ai) =

{
2
(
exp(−(β>Xi − 0.5)2)− 0.6

)
(Ai − 0.5) “nonlinearX-by-A interaction effect”(

0.6β>Xi

)
(Ai − 0.5) “linearX-by-A interaction effect”

(18)

In (18), we set m = (1, 2, 3, 4, 0, . . . , 0)> ∈ Rp and β = (1, 0.5, 0.25, 0.125, 0, . . . , 0)> ∈ Rp, where each vector
was normalized to have unit norm. We considered the cases with p ∈ {5, 10}. Throughout the paper, we took
m ∼ N(0, 52I) and an uninformative prior for β, i.e., set κ = 0 in (9). As a comparison method, we used
the following logistic linear model: logit(P (Yi = 1)) = α + m>Xi + (β0 + β>Xi)(Ai − 0.5), with the prior
distributions, α ∼ t(df = 3) with location= 0 and scale= 8, β0 ∼ N(0, 52), andm,β ∼ N(0, 52I).

As an evaluation metric, we first consider the expected deviance measured on an independently generated test set (of
size ñ = 104) to assess the accuracy of the models in predicting the new data, as defined by:

Deviance(ỹ,θ) = − 2

ñ

ñ∑
i=1

log

(
1

T

T∑
t=1

P (ỹi|θt)

)
(19)

(note that it is scaled by the testing set size ñ), where T (= 2000) is the length of the Markov chain (after a burn-in
of 2000) and θt is the tth set of sampled parameter values within the Markov chain obtained from the training set.
Accordingly, 1

T

∑T
t=1 P (ỹi|θt) in (19) corresponds to the average posterior probability of ỹi, and the quantity (19)

corresponds to a Bayesian version of the deviance, evaluated on the test set (of size ñ). Smaller values of (19) are better,
indicating greater average accuracy of the predictive model.

Furthermore, we report the expected outcome under the treatment regime a∗, i.e., E[Y (a∗(X))] (which is called the
“value” of the regime a∗) that is Monte-Carlo approximated by ñ−1

∑ñ
i=1 ỹ

(a∗(x̃i))
i based on the test set of size ñ, where

7
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the ITR a∗(x) = I(TBI(x)>0.5) (see (6) for the definition of the TBI) which is trained based on the training set. We also
report the proportion of correct decision (PCD), which is the proportion of the cases such that a∗(x̃i) (i = 1, . . . , ñ)
match with the correct optimal treatment assignment under the true data generation model.

3.2 Simulation results

Figure 1 below displays the results from the simulation experiments when we vary n ∈ {500, 1000, 2000}, p ∈ {5, 10}
and the form of the interaction effect component g ∈ {“nonlinear”, “linear”}, for the linear X main effect (i.e.,
m(X) = π

8m
>X) case. In Appendix, as MCMC convergence diagnostic, we report the Gelman-Rubin potential

scale reduction factor (PSRF) [Gelman and Rubin, 1992] computed for each scenario using the method of Vats and
Knudson [2021], which provides some assurance that the sampler has performed reasonably. For the nonlinear A-by-X
interaction effect scenarios (i.e., the gray panels in Figure 1), the proposed index model that utilizes the flexible link
function g clearly outperforms the logistic linear model which assumes a restricted linear model on the interaction term,
with respect to the all three criteria (the deviance, PCD and the expected outcome). When there is no nonlinearity in
the A-by-X interaction effect term in the underlying model (i.e., the white panels in Figure 1), not surprisingly the
logistic linear model outperforms the index model. However, the contrast in the performance between the two models is
relatively small, compared to that under the nonlinear A-by-X interaction. This suggests that, in the absence of prior
knowledge about the form of the A-by-X interaction effect, the more flexible index model that accommodates nonlinear
treatment effect-modifications (i.e., the nonlinear g term) can be a useful alternative to the linear model approach.

Figure 1: Results for the linear X main effect (m = “linear”) case, with varying g ∈ {“nonlinear”, “linear”},
p ∈ {5, 10}, and n ∈ {500, 1000, 2000}, comparing the performance of the proposed index model (red) with that of
the logistic linear regression model (blue), with respect to the deviance (the first row; a smaller deviance is desired),
the proportion of correct decisions (PCD) (the second row; a larger PCD is desired), and the “value” (the expected
outcomes under ITRs) (the third row; a smaller value is desired).

8
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Figure 2: Results for the nonlinear X main effect (m = “nonlinear”) case, with varying g ∈ {“nonlinear”, “linear”},
p ∈ {5, 10}, and n ∈ {500, 1000, 2000}, comparing the performance of the proposed index model (red) with that of
the logistic linear regression model (blue), with respect to the deviance (the first row; a smaller deviance is desired),
the proportion of correct decisions (PCD) (the second row; a larger PCD is desired), and the “value” (the expected
outcomes under ITRs) (the third row; a smaller value is desired).

The results under the nonlinear X main effect case, i.e., m(X) = 1
2 sin

(
π
2m

>Xi

)
, are given in Figure 2, and are

quite similar to those from the linear X main effect case (i.e., the results present in Figure 1), except that the expected
deviance of the models (both the index model and the logistic linear model), which is a generalization of the mean
squared error that assesses the overall predictive performance, slightly increased due to the X main effect model
misspecification. However, optimal ITRs are derived based only on the model’s A-by-X interaction effect terms. With
respect to the PCD and the expected outcome under ITRs, the results under the linearX main effect and those under
the nonlinearX main effect were close to each other, indicating that these models were quite robust to misspecification
of theX main effect with respect to the ITR estimation performance. We also note that in both Figures 1 and 2 there
was relatively large variability in the ITR estimation performance for the index model, especially when n = 500. On
the other hand, the variability in the overall predictive performance metric (deviance) was comparable for the two
approaches. This reflects the tendency that estimation of optimal ITRs is generally more challenging than making
outcome predictions, as the difference (5) between two predictions has to be computed, and its expected error will be
invariably larger than for a single prediction.

4 Application

In this section, we illustrate the proposed model on data from a COVID-19 convalescent plasma (CCP) study [Troxel
et al., 2022], a meta-analysis of pooled individual patient data from 8 randomized clinical trials. One of the goals of this
study was to guide CCP treatment recommendations by providing an estimate of a differential treatment outcome when
a patient is treated with CCP vs. without CCP [Park et al., 2022]. A larger differential in favor of CCP would indicate a

9
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more compelling reason for recommending CCP. In this context, we aim to use profiles of patients with COVID-19
associated with different benefits from CCP treatment, to optimize treatment decisions.

The study included 2369 hospitalized adults, not receiving mechanical ventilation at randomization, enrolled from April
2020 through March 2021. We used only complete cases for this analysis. A total of 2287 patients were included, with
a mean age of 60.3 (SD 15.2) years and 815(35.6%) women. One of the study’s primary outcomes was the binary
variable indicating mechanical ventilation or death (hence Y = 1 indicates a bad outcome, whose probability we want to
minimize) at day 14 post-treatment, where 336 out of 2287 patients (14.7%) experienced the Y = 1 case at day 14. The
patients were randomized to be treated with either CCP (A = 1) (1190 patients, 52%) or control (A = 0) (i.e., standard
of care; 1097 patients, 48%). Pretreatment patient characteristics were collected at baseline. As in [Park et al., 2022],
in our application, the baseline variables used to model the covariates “main” effect, i.e., the component associated with
the coefficientm in model (3), included age, sex, baseline symptom conditions, age-by-baseline symptom conditions
interaction, blood type, the indicators for history of diabetes, pulmonary and cardiovascular disease, and days since
the symptoms onset. We also included the RCT-specific intercepts and the patients’ enrollment quarters as part of the
covariates “main” effect component.

Since our goal in this analysis is to investigate the differential treatment effect explained by the baseline variablesX ,
we will focus on reporting the estimation results of the heterogeneous treatment effect (HTE) term g(X>β, A) in
model (3) and the corresponding treatment effect contrast ∆(x,θ) in (5). The patient characteristicsX included in the
HTE term, along with the sample proportions, are given in the first column of Table 1. The posterior mean of the index
coefficients β = (β1, . . . , β7)>, along with the corresponding 95% posterior credible intervals (CrI), are provided in
the second column of Table 1. By examining the posterior CrI, the patient’s symptoms severity (oxygen support status)
at baseline, blood type, a history of cardiovascular disease and a history of diabetes appear to be important predictors of
HTE, as the CrI of the coefficients associated with these variables do not include 0.

In the first panel of Figure 3, we display the exponentiated individualized treatment effect, exp(∆(x,θ)), as a function
of the single-index x>β. Specifically, the horizontal axis is the posterior mean of x>β (a point estimate), where the
“observed” posterior mean values x>i β (i = 1, . . . , n) (n = 2287) computed from the posterior sample mean of β, are
represented by the small blue ticks along the axis. The uncertainty in the estimation of the coefficient β (as well as
that of the coefficientm) is also accounted for in the credible bands in Figure 3. For the sake of interpretability, we
exponentiated the HTE estimate ∆(x,θ) = g(x>β, A = 1)− g(x>β, A = 0), so that the vertical axis in the panel
represents the odds ratio (CCP vs. control) for a bad outcome (mechanical ventilation or death). An odds ratio of
less than 1 indicates a superior CCP efficacy over the control treatment. As most of the observed values x>i β of the
single-index fall below the line representing the odds ratio of 1, most of the patients are expected to benefit from CCP
treatment, except those with the x>i β values greater than 0.45, in which the corresponding expected individualized
odds ratios are greater than 1 (about 28% of the observed patients). The U -shaped nonlinear relationship between the
expected odds ratio and the single-index of the model suggests that the use of the flexible link function g in (3) is to be
preferred over a more restricted linear model for this HTE modeling.

Table 1: Pretreatment patient characteristicsX and the corresponding estimated index coefficients β (and 95% CrI)

Pretreatment characteristic xj (sample prevalence, %) Index coefficient βj [95% CrI]

Oxygen support by mask or nasal prongs∗ (1/0) (63%) 0.68 [0.50, 0.80]
Oxygen support by high flow∗ (1/0) (18%) 0.47 [0.16, 0.61]
Age (dichotomized, ≥ 67) (1/0) (35%) -0.13 [-0.46,0.04]
Blood type (A or AB vs. O or B) (1/0) (37%) -0.31 [-0.49, -0.16]
Cardiovascular disease (1/0) (42%) -0.24 [-0.65,-0.06]
Diabetes (1/0) (34%) -0.26 [-0.52, -0.08]
Pulmonary disease (1/0) (12%) 0.05 [-0.16,0.22]
∗ The reference level: hospitalized but no oxygen therapy required.
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Figure 3: The left panel displays the exponentiated version of the estimated individualized treatment effect, the
posterior mean of ∆(x) = g(x>β, A = 1)− g(x>β, A = 0) in (5) (solid curve), along with the corresponding upper
and lower 95% credible interval (CrI) (dashed curves), as a function of the posterior mean of x>β. The right panel also
displays the expected odds ratio (CCP vs. control) (solid curve) and the corresponding 95% CrI (dashed curves), but
the horizontal axis is now the treatment-benefit-index (TBI) (6), P (exp(∆(x)) < 1 | D), where exp(∆(x)) represents
the odds ratio, and the TBI probability is evaluated with respect to the posterior distribution of the parameters in ∆.
The TBI provides a gradient of benefit that ranges from 0 to 1, with a higher value of the TBI indicating a greater
benefit from the CCP treatment, compared to control. The observed values for the quantities on the horizontal axes are
represented by the small blue ticks.

Although the first panel of Figure 3 displays an information about the relationship between the (exponentiated)
individualized treatment effect exp(∆(x)) (i.e., the individualized odds ratio) and the posterior mean of the single-index
x>β, this relationship is non-monotonic, which makes it difficult to construct a “gradient” of the treatment benefit
of A = 1 vs. A = 0, as a function of the patient characteristics x. Thus, in the second panel of Figure 3, we
additionally display the individualized odds ratio exp(∆(x)), as a function of TBI(x) defined in (6), i.e., TBI(x) =
P (exp(∆(x)) < 1|D), where the probability is evaluated with respect to the posterior distribution of the parameters
involving ∆. As a probability, TBI(x) ranges from 0 to 1, where larger values are associated with larger CCP benefit.
For example, patients with a large value of TBI(x) (i.e., TBI scores near 1) were expected to experience large, clinically
meaningful benefits from CCP.

The second panel of Figure 3 displays a monotonically decreasing trend of the expected odds ratio (an increasing CCP
benefit), as the TBI score increases from 0 to 1. Some portions of the expected odds ratio as well as the corresponding
95% CrI exceed 1 for very small TBI values (near 0), suggesting the possibility of harm from CCP as the TBI approaches
0, whereas the TBI values close to 1 indicate a substantial benefit from the CCP treatment over the control treatment. We
can use the TBI scores to stratify patients according to their predicted treatment benefit levels, by setting the treatment
decision rule â∗(x) = I(TBI(x)>0.5) ∈ {0, 1}.

To evaluate the performance of the treatment decision rule â∗(x), we randomly split the data with a ratio of 2:1 into
a training set and a testing set (of size ñ), replicated 100 times, each time obtaining â∗(x) based on the training set,
and the corresponding “value” V (â∗) = E[Y (â∗(X))] by an inverse probability weighted estimator [Murphy, 2005]

V̂ (â∗) =
∑ñ

i=1 YiI(Ai=â∗(Xi))∑ñ
i=1 I(Ai=â∗(Xi))

computed based on the testing set (of size ñ).

For comparison, we also include two naive rules: treating all patients with Control (“All Control”) and treating all
patients with CCP (“All CCP”), each regardless of the individual patients’ characteristics x, in addition to the decision
rules based on the Bayesian linear logistic model which was compared with the proposed index model in Section 3. The
resulting boxplots obtained from the 100 random splits are illustrated in Figure 4.

11



arXiv Bayesian index models for heterogeneous treatment effects A PREPRINT

Figure 4: Boxplots of “value,” obtained from 100 randomly split testing sets. A smaller “value” is desirable.

The results in Figure 4 demonstrate that the index model and the logistic linear regression perform at a similar level
for this dataset, while showing a clear advantage over the näive rules of giving everyone CCP or giving everyone the
control treatment: the averaged proportion of patients with the undesirable outcome (i.e., Y = 1) was considerably less
for the two regression approaches than the two näive rules. This suggests that accounting for patient characteristics can
help optimizing treatment decisions. Although some of the nonlinearities in the association between the treatment effect
and patient characteristics x is captured by the model-implied odds ratio displayed in the first panel of Figure 3, for
this dataset, the simpler linear model appears to perform nearly as well as the index model due to its model parsimony.
However, as demonstrated in Section 3, the more flexible index model may be preferable to the linear model, as it
allows for discovering some key nonlinearities in modeling heterogeneous treatment effects.

5 Discussion

The idea in the Bayesian estimation approach of Antoniadis et al. [2004] was to treat the link function g as another
unknown and approximate it by a linear combination of B-spline basis functions. In this article, to estimate hetero-
geneous treatment effect using a flexible link function, we used the adjusted responses and weights associated with
the iteratively re-weighted least squares (IWLS) algorithm in the quadratic approximation of the log-likelihood, for
each MCMC sampler. The approximation under the IWLS framework and the specific prior choice (10) allows us to
analytically integrate γ out of the approximated posterior (13), which simplifies the sampling procedure for β. Although
the sampling was done using approximated conditional posteriors, this approach appears to work reasonably well.

This paper focused on the context of a randomized clinical trial where the treatment Ai ∈ {0, 1} is randomized
independently of pretreatment characteristicsXi. However, the method can be potentially extended to the case where
the treatment assignment depends on Xi. To estimate individual treatment effects with observational or non-fully
randomized data, we can take a “propensity method” [see, e.g., Imbens and Rubin, 2015, Caron et al., 2022] upon
taking an appropriate reparametrization of the proposed model, which we describe below for a more general context of
k treatment conditions, in which the treatment Ai takes a value a ∈ {1, . . . , k} with probability (i.e., propensity score)
P (Ai = a|Xi) = πa(Xi) (a = 1, . . . , k). Let a = 1 be the reference (control) treatment.

For each fixed β, the condition (4) implies: E[g(X>i β, Ai)|Xi] =
∑k
a=1 g(X>i β, a)πa(Xi) = 0, or equivalently,

g(X>i β, a = 1) = −
∑k
a=1 g(X>i β, a)πa(Xi)

π1(Xi)
. Given this representation for g(X>i β, a = 1), we can reparametrize

the canonical parameter of model (3), that is, ηi(Xi, Ai) = m>Xi +
∑k
a=1 I(Ai=a)g(X>i β, a), by

ηi(Xi, Ai) = m>Xi +

k∑
a=2

I(Ai=a)g(X>i β, a)− I(Ai=1)

k∑
a=2

g(X>i β, a)
πa(Xi)

π1(Xi)

= m>Xi +

k∑
a=2

g(X>i β, a)wa(Ai,Xi)

(20)

where wa(Ai,Xi) = I(Ai=a) − πa(Xi)
π1(Xi)

I(Ai=1). This parametrization is an unconstrained formulation of model (3)
without the constraint (4), where the propensity score πa(Xi) (a = 1, . . . , k) is incorporated through the subject i-
and treatment a-specific weight wa(Ai,Xi) in the formulation. In model (20), the interaction term g∗(Xi, Ai) :=
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∑k
a=2 g(X>i β, a)wa(Ai,Xi) still satisfies the condition of the form (4), since E[wa(Ai,Xi)|Xi] = 0, indicating that

E[g∗(Xi, Ai))|Xi] = 0.

In the estimation, as in Section 2.2.2 for the binary treatment condition Ai ∈ {0, 1}, we can proceed as follows for
the general k treatment conditions with Ai ∈ {1, . . . , k} and also in the context of an observational or a non-fully
randomized study. We can define the n × L(k − 1) design matrix Dβ = (Dβ,2; . . . ;Dβ,k), where each element
(the n × L matrix) Dβ,a (a = 2, . . . , k) that is specific to each treatment condition A = a (a = 2, . . . , k) denotes
the evaluation matrix of the basis ψ̃(·) on {β>Xi}ni=1 multiplied by the subject i- and treatment condition a-specific
weight wia = wa(Ai,Xi)(the weight is defined on the second line of (20)), so that its ith row corresponds to the
1× L vector, wiaψ̃(β>Xi)

>, with the weight wia incorporating the pre-estimated treatment propensity score πa(X)
(a = 1, . . . , k). The spline coefficient vector γ ∈ RL(k−1) associated with the design matrix Dβ can be introduced,
which yields the representation g = Dβγ ∈ Rn as in Section 2.2.2, and the same estimation procedure of Section 2.2.3
and 2.3 can be employed to conduct posterior inference.

Future work will extend the model to accommodate multiple treatment outcomes to allow for borrowing of strength
between the available outcomes in modeling heterogeneous treatment effects.
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Appendix

As MCMC convergence diagnostic for the simulation example in Section 3, we report the Gelman-Rubin potential scale
reduction factor (PSRF) computed for each scenario.

Shape of the component m Shape of the component g p n Pr(GR <1.03) Pr(GR <1.05) Pr(GR <1.07)
β γ m β γ m β γ m

linear

nonlinear

5
500 0.856 1.000 1.000 0.970 1.000 1.000 0.998 1.000 1.000
1000 0.908 0.999 1.000 0.986 1.000 1.000 0.998 1.000 1.000
2000 0.916 1.000 1.000 0.984 1.000 1.000 1.000 1.000 1.000

10
500 0.602 0.997 1.000 0.950 1.000 1.000 1.000 1.000 1.000
1000 0.744 1.000 1.000 0.981 1.000 1.000 1.000 1.000 1.000
2000 0.803 1.000 1.000 0.988 1.000 1.000 1.000 1.000 1.000

linear

5
500 0.844 1.000 1.000 0.984 1.000 1.000 0.998 1.000 1.000
1000 0.902 1.000 1.000 0.984 1.000 1.000 1.000 1.000 1.000
2000 0.930 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
500 0.485 0.999 1.000 0.925 1.000 1.000 0.999 1.000 1.000
1000 0.689 0.997 1.000 0.968 0.999 1.000 1.000 1.000 1.000
2000 0.758 1.000 1.000 0.977 1.000 1.000 1.000 1.000 1.000

nonlinear

nonlinear

5
500 0.950 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
1000 0.970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2000 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
500 0.750 0.996 1.000 0.991 1.000 1.000 1.000 1.000 1.000
1000 0.888 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
2000 0.933 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

linear

5
500 0.922 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.978 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2000 0.968 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000

10
500 0.734 0.999 1.000 0.986 1.000 1.000 1.000 1.000 1.000
1000 0.884 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
2000 0.936 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table A1: Summary of the Gelman-Rubin (GR) diagnostic over 100 simulation replications for each scenario. The GR
potential scale reduction factor (PSRF) was computed for each element of the components β, γ, andm. For each of
these components, we computed the proportion of the individual elements’ PSRF statistics being less than a certain
threshold (1.03, 1.05, 1.07) by averaging the PSRF statistics across the corresponding component’s elements and across
the 100 simulation replications (for example, for the component β ∈ Rp, the proportion was computed based on 100 ∗ p
PSRF statistics). The results for β indicate that almost all PSRF statistics were less than 1.07, while those of γ and
m were consistently smaller than 1.03 for almost all the scenarios, providing some assurance that the sampler has
performed reasonably.
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