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ABSTRACT

This paper presents a Bayesian reformulation of covariate-assisted principal (CAP) regression of
Zhao et al. [2021a], which aims to identify components in the covariance of response signal that
are associated with covariates in a regression framework. We introduce a geometric formulation
and reparameterization of individual covariance matrices in their tangent space. By mapping the
covariance matrices to the tangent space, we leverage Euclidean geometry to perform posterior
inference. This approach enables joint estimation of all parameters and uncertainty quantification
within a unified framework, fusing dimension reduction for covariance matrices with regression
model estimation. We validate the proposed method through simulation studies and apply it to analyze
associations between covariates and brain functional connectivity, utilizing data from the Human
Connectome Project.

Keywords Dimension reduction · Heteroscedasticity · Brain functional connectivity

1 Introduction

This paper reformulates covariate-assisted principal (CAP) regression of Zhao et al. [2021a] in the Bayesian paradigm.
The approach identifies covariate-relevant components of the covariance of multivariate response data. Specifically, the
method estimates a set of linear projections of multivariate response signals, whose variance is related with covariates.
In neuroscience, there is interest in analyzing statistical dependency between time-series of brain signals in distinct
regions of the brain, which we refer to as functional connectivity (FC) [Fox and Dunson, 2015, Lindquist, 2008, Monti
et al., 2014, Fornito et al., 2013, Fornito and Bullmore, 2012], as this statistical dependency is related with behavioral
characteristics. The brain signals that underlie FC are multivariate, and each brain activity is considered relative to
others [Varoquaux et al., 2010] in analyzing FC. This paper develops a Bayesian approach that simultaneously conducts
dimension reduction of the multivariate signals to analyze the association between covariates and the FC characterized
by the covariance between the brain signals.

Typically, the first step to analyze brain FC is to define a set of nodes corresponding to spatial regions of interest (ROIs),
where each node is associated with its own time course of imaging data. Then the network connections (or an “edge”
structure between the nodes) are subsequently estimated based on the statistical dependency between each of the nodes’
time course [Friston, 2011, van der Heuvel and Hulshoff Pol, 2010]. FC networks have been inferred using Pearson’s
correlation coefficients [Hutchison et al., 2013] and also with partial correlations in the context of Gaussian graphical
models [Whittaker, 1990, Hinne et al., 2014] summarized in the precision or inverse covariance matrix. In recent years,
there has been a focus on subject-level graphical models where the node-to-node dependencies vary with respect to
subject-level covariates. This line of research involves methods to estimate or test group-specific graphs [Guo et al.,
2011, Danaher et al., 2014, Xia and Li, 2017, Xia et al., 2018, Narayan et al., 2015, Durante and Dunson, 2018, Xia
et al., 2015, Cai et al., 2016, Saegusa and Shojaie, 2016, Peterson et al., 2015, Tan et al., 2017, Lin et al., 2017] as well
as general Gaussian graphical models for graph edges that allow both continuous and discrete covariates, estimated
based on trees [Liu et al., 2010], kernels [Kolar et al., 2010, Lee and Xue, 2018], linear or additive regression [Ni et al.,
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2019, Wang et al., 2022, Zhang and Li, 2022]. However, like other standard node-wise regression methods [e.g., Leday
et al., 2017, Meinshausen and Buhlmann, 2006, Peng et al., 2009, Kolar et al., 2010, Cheng et al., 2014, Ha et al.,
2021] in graphical models, these approaches focus on edge detection (i.e., estimation of the off-diagonal elements)
rather than estimating the full precision or covariance matrix and do not explicitly constrain positive definiteness of
precision or covariance matrices. Works on general tensor outcome regression [Sun and Li, 2017, Li and Zhang, 2017,
Lock, 2018] also do not generally guarantee the positive definiteness of the outcomes. While the problem of dimension
reduction of individual covariances has been studied in brain dynamic connectivity analysis [Dai et al., 2020], problems
in computer vision [Harandi et al., 2017, Li and Lu, 2018, Gao et al., 2023] and brain computer interfaces [Xie et al.,
2017, Davoudi et al., 2017] as well as multi-group covariance estimation [Flury, 1984, 1986, Boik, 2002, Pourahmadi
et al., 2007, Hoff, 2009, Franks and Hoff, 2019], covariate information was not utilized in conducting dimension
reduction. Gaussian graphical models have been applied to study brain connectivity networks in fMRI data [e.g., Li
and Solea, 2018, Zhang et al., 2020], however, the focus was on analyzing connectivity networks without explicitly
considering their relationship with subject-level covariates.

In this paper, in line with the covariance regression literatures [see, e.g., Hoff and Niu, 2012, Fox and Dunson, 2015,
Zou et al., 2017, Pourahmadi, 2011, Varoquaux et al., 2010, Zhao et al., 2021a,b, 2022, Engle and Kroner, 1995, Fong
et al., 2006], we will frame the problem of analyzing FC as modeling of heteroscedasticity, i.e., estimating a covariance
function Σx = var[Y |x] across a range of values for an explanatory x-variable. Specifically, we consider a generalized
linear model of the form g(Σi) = x⊤

i β for covariance, where g(·) is a link function (that incorporates unknown
dimension reduction components) to relate a p× p symmetric positive definite (SPD) matrix to a linear predictor. In
contrast to the approach developed in Zhao et al. [2021a] where each dimension-reduction vector for Σi is estimated
sequentially or separately, the proposed framework allows coherent and simultaneous inference on all model parameters
within the Bayesian paradigm.

The outcome data of interest are multivariate time-series resting-state fMRI (rs-fMRI) data in Rp measured simultane-
ously across the p ROIs (or parcels) defined based on an anatomical parcellation [Eickhoff et al., 2018] or “network
nodes” [Smith et al., 2012] derived based on a data-driven algorithm, such as independent component analysis (ICA)
[Calhoun et al., 2009, Smith et al., 2013]. We will apply the proposed Bayesian CAP regression to data from the Human
Connectome Project (HCP) [Van Essen et al., 2013] to compare short sleepers (i.e., ≤ 6 hours) with conventional
sleepers (i.e., 7 to 9 hours) with respect to their FC, as in Seiler and Holmes [2017].

One typical approach to associating brain FC with behavior is to take a massive univariate test approach that relates each
connectivity matrix element with subject-level covariates [e.g., Grillon et al., 2013, Woodward et al., 2011]. However,
this “massive edgewise regression” lacks statistical power, as it (i) ignores dependencies among the connectivity matrix
elements; and (ii) involves quadratically increasing number of regressions that exacerbate the problem of multiple
testing. On the other hand, multivariate methods, such as principal component analysis (PCA), consider the data from
all ROIs at once which is useful if we believe that multiple brain regions work together to accomplish cognitive tasks
[Seiler and Holmes, 2017], and can reduce the dimensionality of the original outcome to a smaller number of “networks”
components.

In this paper, instead of directly modeling the subject-level covariance matrices Σi (as in Seiler and Holmes [2017],
Fox and Dunson [2015], Zou et al. [2017]) where most of the node-wise connections’ heterogeneity may be unrelated
with covariates xi, we estimate a lower dimensional component within Σi associated with xi. We will characterize this
lower dimensional structure by an orthonormal matrix Γ ∈ Rp×d where Γ⊤Γ = Id (i.e., Γ is in a Stiefel manifold)
with d ≤ p.

For a multivariate outcome signal Yi,l ∈ Rp at volume (i.e., time point) l for subject i, Seiler and Holmes [2017]
utilized the following heteroscedesticity model

var(Yi,l) = Bxix
⊤
i B

⊤ + σ2Ip (l = 1, . . . , Ti)(i = 1, . . . , n), (1)
where the covariance matrix Σi = var(Yi,l) of the outcome is a quadratic function of Bxi ∈ Rp with covariates
xi ∈ Rq , and B ∈ Rp×q and σ2 > 0 are unknown parameters. Model (1) is quite restrictive since the noise covariance
σ2Ip is diagonal with independent variances. On the other hand, the general version proposed by Hoff and Niu [2012]
replaces σ2Ip by a p× p SPD matrix, requiring a large number of parameters (that can scale quadratically in p). The
approaches proposed in Fox and Dunson [2015], Zou et al. [2017] also similarly model the whole p× p matrix var(Yi,l)
as outcomes, which may make the interpretation challenging for large matrices [Zhao et al., 2021a].

Zhao et al. [2021a] considered
log var(γ(k)⊤Yi,l) = x⊤

i β
(k) (2)

where the directions for outcome projection γ(k) (k = 1, . . . , d) are sequentially estimated, subject to identifiability
constraints γ(j) ⊥ γ(k) (j ̸= k) and γ(k)⊤Σ∗γ(k) = 1, where Σ∗ is some p × p covariance representative of the
overall study population.
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Model (2) involves unknown parameters both in the outcome projection with Γ = [γ(1); . . . ;γ(d)] ∈ Rp×d and the
covariates’ regression coefficients B = [β(1); . . . ;β(d)]⊤ ∈ Rd×q , and joint inference on Γ and B is not straightforward
under a sequential optimization framework. Thus, in Zhao et al. [2021a,b, 2022], bootstrap-based statistical inference
was conducted only on the regression coefficients B, and not on the projection dimension reduction coefficients Γ.
The proposed Bayesian estimation approach simultaneously models all the relevant components, and provide a more
coherent uncertainty quantification on the parameters Γ and B, as well as providing the opportunity to account for prior
information.

Specifically, extending the formulation (2), we consider a log-variance model of the form:

log var(Γ⊤Y ∗
i,l) = diag(Bxi + ui) (l = 1, . . . , Ti)(i = 1, . . . , n), (3)

where Y ∗
i,l ∈ Rp is a standardized response signal Yi,l ∈ Rp (to be indicated shortly) upon which we apply a dimension

reduction projection with Γ, and subject-specific random effects ui ∼ N(0, σ2Id), with some σ2 > 0, describe
subject-level variation in the variance beyond what is explained by the covariates xi in the Bayesian paradigm. In
Seiler’s model (1), the regression component Bxix

⊤
i B

⊤ ∈ Rp×p is of rank-1 (since the vector Bxi ∈ Rp is rank-1).
On the other hand, model (3) identifies a rank-d (where d ≥ 1) structure via Γ in the outcome space, and thus is
potentially more flexible. In particular, by reducing the dimensionality (from p to d) and modeling only the relevant
components, the CAP approach avoids the need to work with the full p-by-p covariance matrix, potentially offering
computational advantages, and facilitating a more focused analysis. In (3), log(·) represents the matrix logarithm, and
diag(Bxi + ui) is the d× d diagonal matrix with the diagonal elements Bxi + ui ∈ Rd.

2 Method

2.1 Covariance model

We consider n subjects, with subject-level covariances between brain activity time series from p ROIs {Σi ∈ Rp×p, i =
1, . . . , n}. We consider the associated p-dimensional brain signal vectors Yi,l ∈ Rp (l = 1, . . . , Ti) observed over Ti

time points for each subject i (i = 1, . . . , n), along with subject-level vectors of covariates xi ∈ Rq (i = 1, . . . , n). As
our focus is on the statistical dependency characterized by the covariance between the brain signals (rather than the mean
activation), without loss of generality we assume that the observed signal is mean-centered so that

∑Ti

l=1 Yi,l = 0 ∈ Rp

for each subject (i = 1, . . . , n).

Let us denote the space of p×p SPD matrices by Sym+
p = {Σi ∈ Rp×p}. The space Sym+

p forms a nonlinear manifold
and does not conform to Euclidean geometry; for example, the negative of a SPD matrix and some linear combinations
of SPD matrices are not SPD [Schwartzman, 2016], and thus, comparing covariance matrices in the Euclidean vector
space is not adequate to capture and preserve the complex structure of the nonlinear manifold. However, Sym+

p is a
Riemannian manifold under the affine-invariant Riemannian metric [Pennec et al., 2006], whose tangent space (which
approximates the local geometry of the manifold at a given point) forms a vector space of symmetric p× p matrices.

Under the affine-invariant Riemannian metric, we will represent the local differences of covariance matrices Σi from
some fixed reference point Σ∗ ∈ Sym+

p with vectors in the tangent space (at the identity matrix Ip). For a fixed
reference point Σ∗ ∈ Sym+

p , the mapping ϕΣ∗ : Σi → log(Σ
∗− 1

2ΣiΣ
∗− 1

2 ) [Varoquaux et al., 2010] maps locally the
bipoint Σ∗,Σi ∈ Sym+

p × Sym+
p to an element in the tangent space (at Ip), which is no longer linked by the positive

definiteness constraint [Pervaiz et al., 2020] and forms a vector space.

A connection that enables a posterior inference in this tangent space is in recognizing that this parametrization
ϕΣ∗(Σi) = log(Σ

∗− 1
2ΣiΣ

∗− 1
2 ) is equivalent to applying a “whitening” matrix Σ∗− 1

2 to the original signal Yi,l ∈ Rp,
i.e.,

Y ∗
i,l := Σ∗− 1

2Yi,l,

and then working with its log-variance: log var(Y ∗
i,l) = log var(Σ∗− 1

2Yi,l) = log(Σ
∗− 1

2ΣiΣ
∗− 1

2 )(= ϕΣ∗(Σi)).
Thus, we obtain a tangent space parametrization ϕΣ∗(Σi) = log var(Y ∗

i,l) of the covariance Σi ∈ Sym+
p (that can be

related with the observable signal Y ∗
i,l in the tangent space).

In this paper, treating {Γ⊤ΣiΓ} = Sym+
d as a Riemannian manifold, we characterize the dimension reduction for Σi

through the bilinear transformation with an unknown orthonormal matrix Γ ∈ Rp×d. In particular, we parametrize the
local differences of Γ⊤ΣiΓ (= var(Γ⊤Yi,l)) ∈ Sym+

d from a fixed point Γ⊤Σ∗Γ ∈ Sym+
d by vectors of the tangent

space at Id,
ϕΓ⊤Σ∗Γ : Γ⊤ΣiΓ → log(Γ⊤Σ

∗− 1
2ΣiΣ

∗− 1
2Γ) (= log var(Γ⊤Y ∗

i,l)) (4)

3
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Then, we model the subject-to-subject variability of this tangent space parametrized objects ϕΓ⊤Σ∗Γ(Γ
⊤ΣiΓ) =

log var(Γ⊤Y ∗
i,l) (i = 1, . . . , n) in (4) based on xi (i = 1, . . . , n) (see model (3)), treating the local difference of

Γ⊤ΣiΓ from Γ⊤Σ∗Γ as a perturbation of Γ⊤Σ∗Γ.

Remark 2.1 Note that we do not use the same definition of the affine-invariant logarithmic mapping as in Pennec
et al. [2006], You and Park [2021], since we are interested in mapping to the tangent space at Id, rather than that at
Γ⊤Σ∗Γ, to extract a statistically independent (diagonal variance) parametrization [Varoquaux et al., 2010] for the
model likelihood (see below). Specifically, mapping (4) corresponds to utilizing the whitening transport approach of Ng
et al. [2016] which applies log mapping along the identity matrix after removing the effect of a reference covariance.

To define this tangent space mapping (4), we must find a reference point Σ∗ ∈ Sym+
p . A sensible point on Sym+

p is a
mean of Σi (i = 1, . . . , n). In this paper, we set Σ∗ = 1

n

∑n
i=1

1
Ti

∑Ti

l=1 Yi,lY
⊤
i,l , i.e., the sample marginal covariance

matrix computed across the subjects i = 1, . . . , n.

To conduct statistical inference on the dimension reducing orthonormal matrix Γ and the parameter B in model (3), we
shall use the following d-dimensional Gaussian likelihood model:

Γ⊤Y ∗
i,l ∼ Nd (0, Λi) with variance Λi =

exp(x⊤
i β

(1) + u
(1)
i ) 0 0

0 exp(x⊤
i β

(2) + u
(2)
i ) 0

0 0 exp(x⊤
i β

(d) + u
(d)
i )

 ,

(5)
that is, logΛi = diag(Bxi + ui) ∈ Rd×d (a log-linear model for variance), where B = [β(1); . . . ;β(d)]⊤ ∈ Rd×q

is the regression coefficient matrix associated with covariates xi ∈ Rq, and ui = [u
(1)
i , . . . , u

(d)
i ]⊤ ∈ Rd is the

subject-level noise vector with u
(k)
i ∼ N(0, σ2). The prior distribution on Γ is a matrix angular central Gaussian

(MACG) [Chikuse, 1990, Jupp and Mardia, 1999] with some hyperparameter Ψ ∈ Sym+
p (see Section 2.2 below).

Remark 2.2 The variance model (5) should be distinguished from the principal component (PC) regression that relates
xi with the PCs Γ⊤Y ∗

i,l ∈ Rd, as our study interest is the association between the covariate xi and the variance of the
PCs, that is, var(Γ⊤Y ∗

i,l) ∈ Sym+
d , rather than that between xi and the PCs Γ⊤Y ∗

i,l ∈ Rd themselves.

Remark 2.3 In conducting the posterior inference (described in Section 2.2), the assumption that we make is that the
set of orthogonal directions Γ for Y ∗

i,l ∈ Rp is sufficient for characterizing the association between var(Y ∗
i,l) and the

covariate xi.

Upon back-transforming the tangent space parametrization (4) into the original space Sym+
d by applying the affine-

invariant exponential map to ϕΓ⊤Σ∗Γ(Γ
⊤ΣiΓ) = log var(Γ⊤Y ∗

i,l), we have, under model (5), the variance model

Γ⊤ΣiΓ = Γ⊤Σ∗ 1
2 exp(diag(Bxi + ui))Σ

∗ 1
2Γ, (6)

where Σ∗ is the fixed reference point employed in the tangent space parametrization. In model (6), the population-level
covariance Γ⊤Σ∗Γ ∈ Rd×d in which the data-driven orthogonal Γ characterizes the principal modes of the variability
within Σi associated with covariates xi, is scaled by the subject-level variance exp(diag(Bxi + ui)) ∈ Rd×d. By
making posterior inference on the parameters of the model (5), we can make inference on the parameters in (6).

2.2 Posterior inference

Upon diagonalization via the dimension reduction matrix Γ, the model (5) associated with the variance Λi is a
log-linear model, logΛi = diag(Bxi + ui) (i = 1, . . . , n), modeled based on the covariates xi. Let us use Y ∗ to
represent the collection {Y ∗

i,l (= Σ∗− 1
2Yi,l) ∈ Rp, i = 1, . . . , ni, l = 1, . . . , ni} and Λ to represent the collection

{Λi ∈ Rd×d, i = 1, . . . , n}. Then, the posterior distribution of the model parameters, (Γ,Λ,B, σ2), can be expressed
in terms the product of the likelihood and the prior,

p(Γ,Λ,B, σ2|Y ∗) ∝ p(Y ∗|Γ,Λ,B, σ2)p(Γ,Λ,B, σ2), (7)
where the model likelihood p(Y ∗|Γ,Λ,B, σ2) is specified based on the Gaussian model (5),

p(Y ∗|Γ,Λ,B, σ2) = p(Y ∗|Γ,Λ) ∝
n∏

i=1

Ti∏
l=1

p(Γ⊤Y ∗
i,l|Γ,Λi)

∝
n∏

i=1

Ti∏
l=1

exp

{
−1

2
log |Λi| −

1

2
tr(Λ−1

i Γ⊤Y ∗
i,lY

∗⊤
i,l Γ)

}
,

4
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and the prior p(Γ,Λ,B, σ2) is specified as

p(Γ,Λ,B, σ2) = p(Γ,B, σ2)p(Λ|Γ,B, σ2)

∝ p(Γ)p(B)p(σ2) exp

{
− 1

2σ2

n∑
i=1

(λi −Bxi)
⊤(λi −Bxi)−

n

2
log σ2

}
,

(8)

where λi ∈ Rd is the vector of the diagonal elements of logΛi ∈ Rd×d, and independent priors p(Γ,B, σ2) =
p(Γ)p(B)p(σ2) are used for the parameters Γ, B and σ2. We use a mean-zero (weakly informative) matrix Gaussian
prior on B ∈ Rd×q (with element-wise standard deviation 2.5) and a (weakly informative) mean-one exponential prior
on σ2 > 0. The prior on Γ is MACG(Γ|Ψ) with a hyperparameter Ψ ∈ Sym+

p , whose density is

p(Γ|Ψ) = |Ψ|−d/2|Γ⊤Ψ−1Γ|−p/2 (9)

where Γ is in the space of p× d orthonormal matrices. Note that an orthonormal random matrix Γ ∈ Rp×d is said to be
distributed as MACG(Γ|Ψ) (9), if Γ is equal in distribution (

d
=) to the orthonormal matrix ΓU := U(U⊤U)−1/2 ∈

Rp×d, where
U ∼ Np×d(0p×d,Ψ, I), (10)

(i.e., U is a matrix Gaussian with row covariance Ψ ∈ Rp×p and identity column covariance I ∈ Rd×d). Accordingly,
the orthonormal matrix Γ(

d
= ΓU := U(U⊤U)−1/2) represents the “orientation” of U ∈ Rp×d. We can incorporate

prior structure such as spatial correlation among the p regions through the row covariance Ψ.

2.2.1 Posterior computation via polar expansion

A MCMC sampling for Γ from the posterior (7) is challenging due to the restriction that Γ is in a Stiefel manifold. To
get around with this constraint, we will use polar expansion to transform the orthonormal Γ to an unconstrained object
(U). Generally, “parameter expansion” of a statistical model refers to methods which expand the parameter space by
introducing redundant working parameters for computational purposes [Jauch et al., 2021]. By polar decomposition
[Higham, 1986], any arbitrary (random) matrix U ∈ Rp×d can be decomposed into two components

U = ΓUSU (11)

(almost surely), where the first component ΓU := U(U⊤U)−1/2 ∈ Rp×d is an orthonormal (i.e., a rotation) matrix,
and the second component SU := (U⊤U)1/2 ∈ Rd×d is a symmetric nonnegative (i.e., a stretch tensor) matrix.

With a matrix Gaussian prior on U , we have a MACG prior such that Γ d
= ΓU . Accordingly, we can write the posterior

by p(Γ,Λ,B, σ2|Y ∗) = p(ΓU ,Λ,B, σ2|Y ∗). Then, via polar expansion (11), we can work with the expanded
posterior

p(ΓU ,Λ,B, σ2|Y ∗) → p(U ,Λ,B, σ2|Y ∗)

where we “parameter expand” from an orthonormal ΓU to an unconstrained U , in which

p(U ,Λ,B, σ2|Y ∗) ∝ p(Y ∗|U ,Λ)p(U ,Λ,B, σ2) = p(Y ∗|ΓU ,Λ)p(U ,Λ,B, σ2)

∝
n∏

i=1

Ti∏
l=1

exp

{
−1

2
log |Λi| −

1

2
tr(Λ−1

i Γ⊤
UY

∗
i,lY

∗⊤
i,l ΓU )

}
p(U)p(B)p(σ2)p(Λ|U ,B, σ2).

(12)

We first approximate samples from the posterior distribution p(U ,Λ,B, σ2|Y ∗) using MCMC and then conduct the
polar decomposition (11) to approximate samples from the posterior distribution associated with ΓU

d
= Γ. Specifically,

given a Markov chain {Ut,Λt,Bt, σt} whose stationary distribution is proportional to (12), we approximate the
marginal posterior distribution of Γ by {Γt} where Γt = Ut(U

⊤
t Ut)

−1/2 for each t, that yields approximate samples
from the posterior distribution of (Γ,Λ,B, σ2). As in any PCA-type analysis, there is a sign non-identifiability of Γ;
the non-identifiability of matrix Γ up to random sign changes for each component. That is, the component vector γ(k)

and −γ(k) correspond to the same direction. We need to align the posterior samples coming from multiples chains
based on Procrustes alignment. In this paper, we obtain an MCMC approximation to the posterior distribution of the
parameters (U ,Λ,B, σ) using an adaptive Hamiltonian Monte Carlo (HMC) sampler [Neal, 2011] with automatic
differentiation and adaptive tuning functionality, as implemented in Stan [Stan Development Team, 2023].

Unlike ICA, where the order of the extracted components is relatively arbitrary, the components specified by the orthonor-
mal matrix Γ can be rank-ordered according to the proportion of variance of the expected log-variance E[log Λ

(k)
i |Y ∗]

5
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(k = 1, . . . , d) they explain across the samples i = 1, . . . , n. Here, log Λ(k)
i = x⊤

i β
(k) + u

(k)
i (k = 1, . . . , d) is the

(kth) diagonal element of the log-variance logΛi. Thus, we sort the estimated d components on a decreasing order,

with respect to the magnitude of the sample variance V (k) =
∑n

i=1

{
E[log Λ

(k)
i |Y ∗]− 1

n

∑n
i=1 E[log Λ

(k)
i |Y ∗]

}2

of

the expected log-variance E[log Λ
(k)
i |Y ∗] (k = 1, . . . , d). This sample variance V (k) quantifies the between-subject

variability in the log-variance of the multivariate signal captured by the kth component.

2.3 Determination of the number d of the components

The number of components d is determined based on a metric that measures the level of “deviation from diagonality”
(DfD) of the sample version of Λi in (5), as in Zhao et al. [2021a]. If the estimated variance v̂ar(Γ⊤Y ∗

i,l) =

Γ⊤Σ∗− 1
2 Σ̂iΣ

∗− 1
2Γ = Λ̂i of the rotated matrix Γ⊤Y ∗

i,l deviates from the diagonality assumed in model (5), then the
following quantity

logDfD({Λ̂i}) :=
1

n

n∑
i=1

Ti

(
log|Diag(Λ̂i)| − log|Λ̂i|

)
, (13)

where Diag(Λ̂i) is a d× d diagonal matrix with its diagonal elements given by the diagonal elements of Λ̂i, and the
determinants |Diag(Λ̂i)| and |Λ̂i| correspond to the determinants of the d× d matrices diag(Λ̂i) and Λ̂i, respectively,
tends to deviate from 0. From Hadamard’s inequality, we have logDfD({Λ̂i}) ≥ 0 [Zhao et al., 2021a, Flury and
Gautschi, 1986], and the equality occurs if the matrix Λ̂i is perfectly diagonal. The requirement for v̂ar(Γ⊤Y ∗

i,l) = Λ̂i

to be diagonal by model (5) may become more stringent as the dimensionality d increases [Zhao et al., 2021a], and thus,
with a too large number of components d, the quantity logDfD({Λ̂i}) tends to deviate from 0.

We will utilize posterior samples from MCMC to compute the posterior mean of (13), E[logDfD({Λ̂i})|Y ∗], by using
the HMC sampler outputs on Λ̂

(t)
i = Γ(t)⊤Σ∗− 1

2 Σ̂iΣ
∗− 1

2Γ(t) for each subject i (i = 1, . . . , n), where Γ(t) is the
tth posterior sampler output for Γ from the Markov chain, and Σ̂i(=

1
Ti

∑Ti

l=1 Y
∗
i,lY

∗⊤
i,l ) is the sample covariance

matrix for subject i. Heuristically, we can increase the projection dimension from 1 to some reasonable number,
ď(≤ p), and choose a suitable number right before a large jump in the metric, or identify an appropriate number by
finding the largest d such that the metric E[logDfD({Λ̂i})|Y ∗] is less than some threshold, i.e., choose the largest d
such that E[logDfD({Λ̂i})|Y ∗] ≤ c for some cutoff value c. In Supplementary Materials, we report the proportion
of the correctly identified number of the components from simulation experiments with c = 1.5, demonstrating the
performance of this approach to determine the number of components in the model.

3 Simulation illustration

3.1 Simulation setup

For each unit (subject) i (i = 1, . . . , n), we simulate a set of outcome signals Yi,l ∈ Rp (l = 1, . . . , Ti) from a
Gaussian distribution with mean zero and p × p unit-specific covariance Σi. In our simulation illustration, we vary
n ∈ {50, 100, 200, 400}, Ti ∈ {10, 20, 40}, and p ∈ {5, 20}.

We first consider the case with p = 5. We specify the unit-specific covariance Σi based on the spectral decomposition

Σi = Γ̃iΛ̃iΓ̃
⊤
i (i = 1, . . . , n), (14)

where the p× p diagonal matrix Λ̃i = exp(diag(B̃xi + ũi)) is based on the model

B̃xi + ũi =


1 0 0
1 0.5 −0.5
1 −0.3 0.3
1 0 0
1 0 0


p×3

(
1
xi1

xi2

)
3×1

+


ũi1

ũi2

ũi3

ũi4

ũi5


p×1

∈ Rp, (15)

with xi1 ∼ Bernulli(0.5), xi2 ∼ N(0, 12), and ũik ∼ N(0, 0.52) (k = 1, . . . , p) generated independently
with each other, and the p × p orthonormal matrix Γ̃i is based on the population level orthonormal matrix
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Γ̃ = (γ1,γ
(1),γ(2),γ4,γ5):

Γ̃ =


γ1 γ(1) γ(2) γ4 γ5

0.447 0.447 0.447 0.447 0.447
0.447 −0.862 0.138 0.138 0.138
0.447 0.138 −0.862 0.138 0.138
0.447 0.138 0.138 −0.862 0.138
0.447 0.138 0.138 0.138 −0.862


p×p

, (16)

which is then transformed into the subject i-specific eigenmatrix Γ̃i,

Γ̃i = (Ωai1 γ(1) γ(2) Ωai2 Ωai3) (i = 1, . . . , n), (17)

where the subject-specific eigenvectors (Ωai1 Ωai2 Ωai3) are obtained based on a randomly generated 3 × 3
orthonormal matrix Ai = (ai1 ai2 ai3) (from the von Mises-Fisher distribution to Ω := (γ1 γ4 γ5). Since
only the 2nd and 3rd rows of the matrix B̃ in (15) are associated with the covariates {xi1, xi2}, only the 2nd and 3rd
columns of the eigenvector matrix in (17) (i.e., the eigenvectors γ(1) and γ(2)) capture the information related to the
covariates {xi1, xi2}, whereas the other eigenvectors (Ωai1 Ωai2 Ωai3) do not capture the information related to
the covariates.

The model indicates that, upon applying the dimension reduction matrix Γ = (γ(1),γ(2)) ∈ Rp×2 to the vector
Yi,l ∈ Rp, we have the reduced form Γ⊤Yi,l ∼ N2(0,Γ

⊤ΣiΓ), where Γ⊤ΣiΓ = exp(diag(Bxi + ui)), in which

Bxi =

(
1 0.5 −0.5
1 −0.3 0.3

)
xi =

(
β
(1)
0 + (xi1 xi2)β

(1)

β
(2)
0 + (xi1 xi2)β

(2)

)
∈ R2 and ui = (u

(1)
i , u

(2)
i ) ∈ R2 with u

(k)
i ∼ N(0, 0.52),

the same form assumed in the proposed dimension reduction model (6) for Σi with d = 2, up to a multiplicative factor
of Γ⊤Σ∗Γ ∈ Sym+

d . Here, this multiplicative factor (stretch tensor) Γ⊤Σ∗Γ, which was introduced in our estimation
model due to the tangent space parametrization at Γ⊤Σ∗Γ (where Σ∗ corresponds to the sample marginal covariance
computed on the training sample for each simulation run), only shifts the intercepts β(1)

0 and β
(2)
0 of the data generation

model. Specifically, the model in the tangent space given a reference point Σ∗ ∈ Sym+
p parametrizes the intercepts as

β
(1)∗
0 := β

(1)
0 + log(γ(1)⊤Σ∗−1γ(1)) and β

(2)∗
0 := β

(2)
0 + log(γ(2)⊤Σ∗−1γ(2)).

For the case with p = 20, for each simulation run, we randomly generate a 20× 20 orthonormal matrix Γ̃ for (16) and
subject-specific 20× 18 orthonormal matrices Ai from the von Mises-Fisher distribution, to define the subject-specific
eigenvectors Γ̃i in (17) but with p = 20, in which the vectors (γ(1),γ(2)) are common eigenvectors whose eigenvalues
vary with the covariates {xi1, xi2}. To specify the matrix B̃ in (15) for p = 20, we augment the matrix with 15 more
rows where each row is (1, 0, 0), and we set ũi ∈ R20 where ũik ∼ N(0, 0.52).

3.2 Evaluation metric

We run the simulation 100 times. For each simulation run, we compute, as evaluation metrics, |⟨γ̂(k),γ(k)⟩| and the
mean squared error (MSE) ∥β̂(k) − β(k)∥2/2 associated with each component, and |σ̂ − σ| (where σ = 0.5) for the
random effect standard deviation, where ·̂ represents the posterior mean of ·. We also report the estimation performance
for the intercepts β(1)∗

0 and β
(2)∗
0 in terms of MSE. Note that, in the estimation, the intercept term β∗

0 = (β
(1)∗
0 , β

(2)∗
0 )⊤

was reparametrized due to the tangent space parametrization given a fixed point Σ∗, where Σ∗ was computed based
on the sample. Additionally, to assess whether the credible intervals provide reasonably correct coverage for the true
values of the parameters, we evaluate the posterior credible intervals of the model parameters (γ(k), β(k) and σ) with
respect to the frequentist’s coverage proportion. For each simulation run, we estimate the posterior distribution of the
parameters based on the simulated data and calculate the 95% posterior credible intervals for the parameters, and then
evaluate how often the credible intervals contain the true parameter values.
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3.3 Simulation results

50 100 200 300 400

0
.0

0
0

.1
0

0
.2

0
0

.3
0

γ
(1)

n

|〈
γ̂(1

) , 
γ(1

) 〉|

T = 10

T = 20

T = 40

50 100 50 100 200 300 400

0
.0

0
0

.1
0

0
.2

0
0

.3
0

γ
(2)

n

|〈
γ̂(2

) , 
γ(2

) 〉|

T = 10

T = 20

T = 40

50 100 50 100 200 300 400

0
.0

0
0

.1
0

0
.2

0
0

.3
0

σ

n

|σ̂
−

σ
|

T = 10

T = 20

T = 40

50 100

50 100 200 300 400

0
.0

0
0

.1
0

0
.2

0
0

.3
0

β
(1)

n

M
S

E
(β^

(1
) )

T = 10

T = 20

T = 40

50 100 50 100 200 300 400

0
.0

0
0

.1
0

0
.2

0
0

.3
0

β
(2)

n

M
S

E
(β^

(2
) )

T = 10

T = 20

T = 40

50 100 50 100 200 300 400

0
.0

0
0

.1
0

0
.2

0
0

.3
0

β
0

 ∗ 

n

M
S

E
(β^

0 ∗
 )

T = 10

T = 20

T = 40

50 100

Figure 1: The model parameter estimation performance for p = 5 case, for the loading coefficient vectors γ(k) (k =
1, 2), the standard deviation of the subject-level parameters σ, and the regression coefficients β(k) (k = 1, 2) and the
intercept β∗

0 , averaged across 100 simulation replications, with varying n ∈ {50, 100, 200, 400} and T ∈ {10, 20, 40}.
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Figure 2: The model parameter estimation performance for p = 20 case, for the loading coefficient vectors γ(k) (k =
1, 2), the standard deviation of the subject-level parameters σ, and the regression coefficients β(k) (k = 1, 2) and the
intercept β∗

0 , averaged across 100 simulation replications, with varying n ∈ {50, 100, 200, 400} and T ∈ {10, 20, 40}.
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The results in Figures 1 and 2 indicate that generally, as the sample sizes n (i.e., the number of subjects) and T (i.e., the
number of time points) increase, the estimation performance improves. Although a larger sample size provides more
information and leads to more precise estimates, the general improvement depends on each component’s effect size
magnitude and the dimensionality p. In Figures 1 and 2, the parameter estimation associated with the first component
(i.e., γ(1) and β(1)) tends to have a better performance compared to that associated with the second component (i.e.,
γ(2) and β(2)), as the first component’s underlying covariates’ effect magnitude in explaining the variability of the
covariance Σi was stronger compared to that of the second component. The performance for the p = 5 cases (in
Figure 1) is slightly better than that for the p = 20 cases (in Figure 2). Besides the effect of the number of subjects
n on the performance, the number of time points T is also important. As the number of time points (T ) increases
(e.g,. T = 40), the estimation tends to benefit from the increased amount of information, leading to more accurate
and reliable estimates of the population-level parameters as well as the subject-level parameters u(k)

i and the standard
deviation σ of the random effects that measures the variability of the random effects u(k)

i across individuals.

n T γ
(1)
1 γ

(1)
2 γ

(1)
3 γ

(1)
4 γ

(1)
5 γ

(2)
1 γ

(1)
2 γ

(2)
3 γ

(2)
4 γ

(2)
5 β

(1)
1 β

(1)
2 β

(2)
1 β

(2)
2 σ

50 10 0.92 0.82 0.88 0.92 0.94 0.92 0.88 0.74 0.93 0.89 0.87 0.86 0.90 0.83 0.91
20 0.91 0.85 0.88 0.94 0.89 0.95 0.83 0.82 0.87 0.92 0.93 0.89 0.90 0.85 0.94
40 0.92 0.90 0.93 0.93 0.94 0.93 0.90 0.83 0.95 0.94 0.91 0.91 0.90 0.93 0.97

100 10 0.94 0.88 0.88 0.91 0.89 0.90 0.89 0.86 0.91 0.95 0.95 0.89 0.89 0.89 0.92
20 0.91 0.86 0.89 0.95 0.96 0.93 0.87 0.89 0.92 0.92 0.94 0.92 0.86 0.90 0.95
40 0.96 0.93 0.94 0.94 0.90 0.97 0.96 0.96 0.92 0.98 0.95 0.91 0.92 0.96 0.96

200 10 0.94 0.92 0.92 0.84 0.90 0.92 0.94 0.93 0.89 0.95 0.94 0.95 0.96 0.97 0.78
20 0.93 0.94 0.96 0.94 0.92 0.95 0.94 0.97 0.91 0.92 0.96 0.95 0.95 0.94 0.93
40 0.93 0.95 0.94 0.90 0.93 0.89 0.91 0.91 0.96 0.93 0.95 0.95 0.96 0.92 0.92

400 10 0.94 0.92 0.95 0.90 0.91 0.92 0.94 0.90 0.89 0.87 0.94 0.97 0.94 0.93 0.77
20 0.94 0.91 0.95 0.95 0.96 0.95 0.98 0.94 0.97 0.93 0.99 0.96 0.93 0.97 0.87
40 0.96 0.98 0.99 0.96 0.94 0.95 0.97 0.96 0.94 0.89 0.94 0.98 0.93 0.94 0.90

Table 1: The proportion of time that 95% posterior credible intervals contain the true values of the loading coefficient
vectors γ

(k)
j (j = 1, . . . , 5) (k = 1, 2), the regression coefficients β

(k)
j (j = 1, 2) (k = 1, 2) and σ out of 100

simulation replications, with varying n ∈ {50, 100, 200, 400} and T ∈ {10, 20, 40}.

The results in Table 1 for the p = 5 cases indicate that the “actual” coverage probability is reasonably close to the
“nominal” coverage probability of 0.95, especially when the sample sizes n and T are relatively large (e.g., n = 400,
T = 40). The results for p = 20 cases were also similar. The results in Table 1 suggest that the Bayesian credible
intervals exhibit reasonably good frequentist coverage, providing estimates of the parameter uncertainty that aligns with
the desired coverage level, reasonably achieving nominal coverage.

4 Application

In this section, we applied the Bayesian covariate-assisted principal regression model to data from HCP. As in Seiler
and Holmes [2017], we used the rs-fMRI data from 820 subjects and examined the associations between rs-fMRI and
sleep duration. Each subject underwent 4 complete 15-minute sessions (with TR = 750ms, corresponding to 1200 time
points per session for each subject), and each 15-minute run of each subject’s rfMRI data was preprocessed according
to Smith et al. [2013]. We focused on the first session which is about a typical duration for rs-fMRI studies. We also
applied the method to the other three sessions to examine the sensitivity and the reliability of the modeling procedure
(see Table 2). We used a data-driven parcellation based on spatial ICA with p = 15 components (i.e., using p = 15
data-driven “networks nodes”; see Figure 3 for their most relevant axial slices in MNI152 space) from the HCP PTN
(Parcellation + Timeseries + Netmats) dataset, where each subject’s rs-fMRI timeseries data were mapped onto the set
of ICA maps [Filippini et al., 2009]; see Smith et al. [2013] for details about preprocessing and the ICA time series
computation. We applied the Bayesian CAP regression to conduct statistical inference on the association between the
FC over these IC networks nodes [Smith et al., 2012] and the covariates.

As in Seiler and Holmes [2017], we classified the subjects into two groups: a group of 489 conventional sleepers
(average sleep duration between 7 and 9 hours each night) and a group of 241 short sleepers (average equal or less than
6 hours each night). This yielded a total of 730 participants to compare FC over the network nodes between short and
conventional sleepers, adjusted for gender as an additional covariate. This type of analysis can provide insights into the
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potential differences in FC between the two groups and help investigate the relationship between sleep duration and
brain connectivity.

Since the time series are temporally correlated, we inferred the equivalent sample size of indepen-
dent samples. We computed the effective sample size (ESS) defined by Kass et al. [1998], ESS =

min
i∈{1,...,n},j∈{1,...,p}

(
Ti

1+2
∑∞

t=1 cor(Y (j)
i,1 ,Y

(j)
i,1+t)

)
, where Y

(j)
i,l is the data at time l of the jth network node for subject i,

following a conservative approach taking the minimum over all p components and n subjects as the overall estimator.
Based on the estimated ESS, we performed thinning of the observed timeseries data, subsampling Ti = T = ESS = 35
time points for each subject. The resulting outcome data, Yi,l (i = 1, . . . , n) (l = 1, . . . , T ), were then mean-removed
per each subject (so that

∑T
i=1 Yi,l = 0 ∈ R15 for each i), and we focused on the association between the covariance

Σi and covariates xi.

Using the deviation from diagonality criterion, the approach identified only a single projection component (i.e., d = 1),
but for the purpose of illustration, here we present the results from a two-component model (i.e., d = 2), where
the two projection components are denoted as C1 and C2. The model coefficients and credible intervals from the
single-component model (d = 1) are reported in Supplementary Materials which are numerically very close to those
associated with the first component C1 of the two-component model. In Figure 4, we summarize the marginal posterior
distribution of the orthonormal loading coefficient (projection) vectors, γ(1) ∈ R15 (displayed in the upper panel) and
γ(2) ∈ R15 (displayed in the lower panel) that defines the two FC components, using credible intervals Bonferroni
corrected by setting the endpoints at the 0.025/p and (1− 0.025/p) quantiles. In Figure 5, we also display the marginal
posterior distribution of the regression coefficients β(1) and β(2) associated with these two components (C1 and C2),
representing the effects of the covariates on the estimated two components.

The results in Figure 5 indicate that the both FC components C1 and C2 are positively associated with sleep duration.
See Supplementary Materials S2 for explantation on the loading coefficients interpretation. In short, being a short
sleeper (compared to being a conventional sleeper) suggests a higher connectivity between two network nodes from
the same color (i.e., two network nodes in the same loading sign), while suggesting a lower connectivity between two
regions from different colors (i.e., two network nodes in the opposing signs), all the other components being held
constant.

Specifically, in Figure 5, the model coefficients β(1) for “Sleep duration" (short-sleeper) and for “Gender" (male)
associated with the first FC component (C1) are both positive, indicating that FC between the nodes Net9 and
Net1 (cerebellum and visual area, that have the opposite loading signs) is weaker for short-sleepers, compared to
conventional sleepers, holding all the other components constant. On the other hand, FC between the nodes Net9 and
Net15 (cerebellum and default network, that have the same loading sign) is stronger for short-sleepers, compared to
conventional sleepers, holding all the other components constant.

In Figure 5, the model coefficients β(2) for sleep duration and gender associated with the second FC component (C2)
are also positive, as in those of C1. Although similar covariate effects are shown for the second FC component C2

as for the first FC component C1, the effect magnitude for the second component C2 is weaker than that of the first
component C1 (note that the estimated components in model (5) are rank-ordered according to the variation in the
expected log-variance they explain), and the C1 and C2’s loading coefficient vectors are orthogonal to each other. These
two components with different loading coefficients provide complimentary information on the underlying FC relevant
to the external covariates.
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Model coefficients Session 1 Session 2 Session 3 Session 4

C1

Net1 0.37 (0.35, 0.39) 0.42 (0.40, 0.44) 0.38 (0.36, 0.40) 0.39 (0.37, 0.41)
Net2 0.03 (0.01, 0.04) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 0.02 (0.01, 0.03)
Net3 0.32 (0.29, 0.34) 0.24 (0.21, 0.27) 0.32 (0.29, 0.34) 0.29 (0.27, 0.32)
Net4 0.03 (0.01, 0.04) 0.06 (0.04, 0.07) 0.05 (0.03, 0.06) 0.02 (0.01, 0.04)
Net5 0.01 (0.00, 0.03) 0.02 (0.00, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03)
Net6 -0.02 (-0.03, -0.01) -0.01 (-0.03, 0.00) -0.02 (-0.03, -0.01) -0.02 (-0.04, -0.01)
Net7 -0.07 (-0.09, -0.06) -0.07 (-0.08, -0.05) -0.07 (-0.08, -0.06) -0.08 (-0.09, -0.06)
Net8 0.58 (0.56, 0.60) 0.51 (0.48, 0.54) 0.56 (0.54, 0.58) 0.50 (0.47, 0.52)
Net9 -0.53 (-0.55, -0.51) -0.57 (-0.59, -0.55) -0.54 (-0.56, -0.53) -0.57 (-0.58, -0.55)
Net10 0.19 (0.17, 0.20) 0.21 (0.19, 0.22) 0.19 (0.18, 0.21) 0.21 (0.20, 0.22)
Net11 0.21 (0.19, 0.22) 0.21 (0.19, 0.22) 0.21 (0.20, 0.23) 0.22 (0.20, 0.23)
Net12 0.08 (0.07, 0.10) 0.12 (0.10, 0.14) 0.09 (0.08, 0.11) 0.14 (0.12, 0.15)
Net13 0.20 (0.18, 0.22) 0.24 (0.22, 0.26) 0.20 (0.18, 0.22) 0.26 (0.24, 0.27)
Net14 -0.01 (-0.02, 0.00) -0.02 (-0.03, -0.01) -0.01 (-0.02, 0.00) -0.02 (-0.03, -0.01)
Net15 -0.08 (-0.10, -0.07) -0.08 (-0.10, -0.07) -0.09 (-0.11, -0.08) -0.11 (-0.12, -0.09)
Sleep duration
(short-sleeper) 0.35 (0.22, 0.48) 0.37 (0.23, 0.50) 0.32 (0.18, 0.45) 0.34 (0.21, 0.46)

Gender (male) 0.19 (0.09, 0.34) 0.19 (0.08, 0.34) 0.20 (0.05, 0.31) 0.23 (0.04, 0.28)

C2

Net1 0.22 (0.19, 0.25) 0.20 (0.17, 0.23) 0.27 (0.24, 0.30) 0.08 (0.05, 0.12)
Net2 0.00 (-0.02, 0.02) -0.01 (-0.03, -0.00) -0.01 (-0.04, 0.02) 0.01 (-0.01, 0.03)
Net3 -0.65 (-0.68, -0.63) -0.69 (-0.72, -0.66) -0.73 (-0.75, -0.70) -0.50 (-0.56, -0.45)
Net4 0.09 (0.07, 0.11) 0.08 (0.06, 0.10) 0.10 (0.07, 0.12) -0.37 (-0.42, -0.33)
Net5 0.05 (0.03, 0.06) 0.03 (0.0, 0.05) 0.01 (-0.01, 0.03) -0.19 (-0.21, -0.17)
Net6 -0.01 (-0.03, 0.00) 0.00 (-0.02, 0.01) -0.04 (-0.06, -0.03) -0.08 (-0.10, -0.06)
Net7 0.01 (-0.01, 0.02) 0.02 (0.00, 0.04) 0.00 (-0.02, 0.02) -0.04 (-0.06, -0.01)
Net8 -0.38 (-0.40, -0.35) -0.45 (-0.48, -0.42) -0.33 (-0.36, -0.30) 0.60 (0.57, 0.64)
Net9 -0.36 (-0.39, -0.33) -0.26 (-0.30, -0.23) -0.31 (-0.33, -0.28) 0.18 (0.14, 0.22)
Net10 0.10 (0.08, 0.12) 0.05 (0.03, 0.08) 0.06 (0.04, 0.08) -0.18 (-0.20, -0.16)
Net11 0.15 (0.13, 0.17) 0.13 (0.11, 0.16) 0.17 (0.15, 0.19) -0.01 (-0.05, 0.02)
Net12 0.23 (0.21, 0.25) 0.22 (0.20, 0.24) 0.19 (0.17, 0.21) -0.28 (-0.31, -0.25)
Net13 0.37 (0.35, 0.39) 0.35 (0.33, 0.37) 0.32 (0.30, 0.35) 0.09 (0.05, 0.13)
Net14 -0.06 (-0.07, -0.04) -0.03 (-0.05, -0.01) -0.06 (-0.07, -0.04) 0.13 (0.11, 0.16)
Net15 -0.11 (-0.13, -0.09) -0.10 (-0.12, -0.08) -0.10 (-0.12, -0.08) 0.14 (0.11, 0.16)
Sleep duration
(short-sleeper) 0.21 (0.06, 0.32) 0.21 (0.10,0.34) 0.18 (0.07, 0.34) 0.17 (0.11, 0.35)

Gender (male) 0.13 (-0.01, 0.25) 0.12 (0.01, 0.24) 0.13 (0.01, 0.26) 0.14 (0.02, 0.25)
σ 0.81 (0.78, 0.84) 0.81 (0.78, 0.85) 0.81 (0.78, 0.85) 0.76 (0.73, 0.79)

Table 2: The posterior medians (and 95% credible intervals) of the loading coefficients and the covariate effect
coefficients of the two identified components (C1 and C2) and the noise standard deviations (σ) of the models,
separately fitted based on the data from the 4 sessions. The results suggest that the FC associated with the sessions are
relatively consistent across the 4 scanning sessions.
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Net1 Net2 Net3 Net4 Net5 Net6 Net7 Net8

Net9 Net10 Net11 Net12 Net13 Net14 Net15

Figure 3: 15 independent components (ICs) from spatial group-ICA constituting a data-driven parcellation with 15
components (“network nodes”), provided by the HCP PTN dataset, represented at the most relevant axial slices
in MNI152 space. According to Seiler and Holmes [2017], these parcels correspond to default network (Net15),
cerebellum (Net9), visual areas (Net1, Net3, Net4 and Net8), cognition-language (Net2, Net5, Net10 and Net14),
perception-somesthesis-pain (Net2, Net6, Net10 and Net14), sensorimotor (Net7 and Net11), executive control (Net12)
and auditory (Net12 and Net13).
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Figure 4: Credible intervals of the loading coefficients γ(1) and γ(2) associated with the two projection components C1

and C2.
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C2 Gender (male)
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Figure 5: The posterior medians and 95% credible intervals of the regression coefficients β(1) and β(2) associated with
the two components C1 and C2.

5 Discussion

Extending the frequentist approach developed in Zhao et al. [2021a], the proposed Bayesian estimation approach
provides a framework to conduct inference on all model parameters simultaneously, effectively fusing dimension
reduction for covariance matrices and regression model estimation in one single step. The approach allows for an
inference that accounts for the uncertainties in the dimension reduction in the subsequent inference on covariate-related
connectivity. In particular, the estimation does not require the computation of the full p-by-p sample covariance matrix
(except for the computation of a reference point for tangent space parametrization) or modeling of the full covariance
matrix. Instead, it focuses on dimension-reduced signals (as the likelihood is specified based on (5)). The CAP
regression approach proposed by Zhao et al. [2021a] allows for a more targeted and efficient analysis by considering the
specific components of the data that are relevant to analyzing the relationships between FC and covariates. Although,
by reducing the dimensionality of the data, the computational burden and complexity associated with estimating and
manipulating the full p-by-p sample covariance matrix can be significantly alleviated, the method is not suitable to
be run in very high-dimensional data, such as voxel-level data. The method is generally better suited to be run in
intermediate spaces, such as those produced by ICA or an anatomical parcellation. Overfitting might occur due to the
large number of parameters in the estimation of the projection matrix Γ. Future work will apply prior distributions on
the dimension reducing matrix Γ as well as the covariate effect parameters B that promote sparsity, for parsimonious
modeling with better estimability and interpretability.

In conducting the posterior inference, the assumption that we make is partially common eigenvectors of the covariance
structure [Wang et al., 2021] as in Zhao et al. [2021a,b, 2022]. The covariance is decomposed into shared and unique
components, where the shared component corresponds to the common eigenvectors and captures the information
related to the covariates. Specifically, the approach decomposes individual covariance matrices Σi into individual-
specific eigenvalues Λi and common eigenvector Γ, while simultaneously fitting a regression model for the log of the
individual-specific eigenvalues in the Bayesian paradigm. Future work may consider modeling of the heterogeneity of
Γ with covariates. A posterior inference on Γ in the Stiefel manifold is introduced. A tangent space parametrization
is introduced to model the variability of these PC decompositions across subjects with subject-level covariates. We
also accounted for the additional subject-specific variability by including the subject-specific random intercepts. The
approach provides joint inference that has shown to have good numerical properties in simulations. The tangent space
parameterization introduced involves mapping the parameters onto a tangent space at a specific point on the manifold.
It is often desirable to choose a reference point that is close to the observed data points in the manifold. For this reason,
we used the sample marginal covariance computed across all subjects as a reference point. Selecting a reference point
that is far from the data can result in a poor approximation and potential bias in the estimation as the tangent space
may not adequately account for the complexity or structure of the underlying SPD manifold. Future work will involve
extending this Bayesian estimation approach to the setting of analyzing dynamic FC.
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Supplementary Materials

S1. Performance of the “deviation from diagonality” criterion in determination of the number of components

Here we report the results from a simulated example to demonstrate the performance of the “deviation from diagonality”
(DfD) criterion defined in (13). We used the same simulation scenarios as in Section 3.1. The data were generated
following the simulation scenarios in Section 3.1 with varying n ∈ {50, 100, 200, 400}, Ti ∈ {10, 20, 40}, and
p ∈ {5, 20} with d = 2 number of components. For each scenario, we ran 100 simulation replications and then reported
the proportion (computed across the 100 runs) that the estimated number of components is the same as the truth (i.e.,
d = 2). For each simulation run, we computed the posterior mean of DfD (13) based on the posterior MCMC samples
on Γ, and used the cutoff value of 1.5 to determine the number of components. In Figure S1, we display the proportions
of identifying the correct number of components. For both p = 5 and 20, as both n and T increases, the proportion of
identifying the correct number of components approximately converges to 1, suggesting that the reasonableness of the
metric (13) in choosing the number of components. When p = 20 and the number of time points (within-subject data
points) T is small (T = 10), the performance is less robust compared to that with a larger T (T = 20 or 40), as the
DfD criterion is computed based on the p× p sample covariance matrix whose estimation is less reliable with smaller
sample sizes.

Figure S1: The proportion of identifying the correct number of components, for different simulation scenarios with
n ∈ {50, 100, 200, 400}, Ti ∈ {10, 20, 40}, and p ∈ {5, 20}.

S2. Interpretation of the projection loading coefficients

For subject i with subject-specific pairwise correlation matrix Σi = [σjj′,i] ∈ Sym+
p , the log-variance of the (kth)

component is

log
(
γ(k)⊤Σiγ

(k)
)
= log

(
1 +

p∑
j ̸=j′

γ
(k)
j γ

(k)
j′ σjj′,i

)
= β

(k)
0 + xiβ

(k)
1 + u

(k)
i

where the kth loading direction γ(k) = (γ
(k)
1 , . . . , γ

(k)
j , . . . , γ

(k)
j′ , . . . , γ

(k)
p )⊤ ∈ Rp (subject to ∥γ(k)∥ = 1). The model

indicates that for any region pair (j, j′), the signs of the corresponding product γ(k)
j γ

(k)
j′ and of the regression coefficient

β
(k)
1 determine the direction of association between the pairwise correlation (σjj′,i) and the covariate xi. Here, for the

simplicity in illustrating the model, Σi is assumed to be a correlation matrix. However, the same interpretation in terms
of the direction of the association is applied to a covariance matrix Σi.

First let us consider the case β(k)
1 > 0; if two brain regions (j and j′) have the same loading signs, the model suggests a

positive association between the correlation σjj′,i and the covariate xi, holding all the other components constant; if the
brain regions have opposite loading signs, the model suggests a negative association between the correlation σjj′,i and
the covariate xi, holding all the other components constant.
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Now let us consider the case β(k)
1 < 0; if two brain regions (j and j′) have the same loading signs, the model suggests a

negative association between the correlation σjj′,i and the covariate xi, holding all the other components constant; if
the brain regions have opposite loading signs, the model suggests a positive association between the correlation σjj′,i

and the covariate xi, holding all the other components constant.

S3. The estimated model coefficients from a single-component model

The model coefficients and credible intervals from the single-component model (d = 1), estimated on the first session
of the HCP dataset used in the Application section of the main manuscript, are displayed in Figure S2. The resulting
model coefficients and posterior distributions are numerically very close to those associated with the first component
C1 of the two-component model, described in Figure 4 of the main manuscript. In Table S1, we report the posterior
medians (and 95% credible intervals) of the projection loading coefficients, the covariate effect coefficients and the
noise standard deviations (σ) of the single-component (d = 1) models, separately fitted based on the data from the
4 sessions of the HCP dataset used in the Application section of the main manuscript. The results indicate that the
FC associated with the sessions are relatively consistent across the scanning sessions, and also the estimated model
parameters are numerically very close to those associated with the first component C1 of the two-component models,
except for the log-variance noise standard deviation σ.
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Figure S2: Credible intervals of the loading coefficients γ(1) (upper panel) and the regression coefficients β(1) (lower
panel) of the estimated component from the single-component model.
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Model coefficients Session 1 Session 2 Session 3 Session 4

C1

Net1 0.38 (0.37, 0.40) 0.42 (0.41, 0.44) 0.40 (0.38, 0.41) 0.39 (0.38, 0.41)
Net2 0.03 (0.02, 0.04) 0.02 (0.01, 0.04) 0.00 (-0.01, 0.01) 0.02 (0.01, 0.04)
Net3 0.27 (0.25, 0.30) 0.22 (0.19, 0.24) 0.28 (0.26, 0.31) 0.27 (0.24, 0.29)
Net4 0.03 (0.02, 0.05) 0.06 (0.04, 0.08) 0.03 (0.02, 0.05) 0.01 (-0.01, 0.02)
Net5 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.00, 0.03) 0.01 (0.00, 0.02)
Net6 -0.02 (-0.03, -0.01) -0.01 (-0.03, 0.00) -0.03 (-0.04, -0.02) -0.03 (-0.04, -0.01)
Net7 -0.07 (-0.08, -0.06) -0.07 (-0.08, -0.05) -0.09 (-0.10, -0.08) -0.08 (-0.09, -0.07)
Net8 0.55 (0.54, 0.57) 0.49 (0.47, 0.51) 0.54 (0.52, 0.56) 0.53 (0.51, 0.55)
Net9 -0.56 (-0.57, -0.54) -0.59 (-0.60, -0.57) -0.55 (-0.56, -0.54) -0.56 (-0.57, -0.54)
Net10 0.19 (0.18, 0.21) 0.21 (0.20, 0.22) 0.21 (0.19, 0.22) 0.20 (0.19, 0.21)
Net11 0.22 (0.20, 0.23) 0.21 (0.20, 0.23) 0.21 (0.20, 0.23) 0.22 (0.20, 0.23)
Net12 0.10 (0.09, 0.11) 0.13 (0.12, 0.15) 0.11 (0.10, 0.13) 0.12 (0.11, 0.14)
Net13 0.22 (0.21, 0.24) 0.25 (0.24, 0.27) 0.22 (0.20, 0.23) 0.26 (0.24, 0.28)
Net14 -0.01 (-0.02, 0.00) -0.02 (-0.03, -0.01) -0.02 (-0.03, -0.01) -0.01 (-0.03, -0.00)
Net15 -0.09 (-0.10, -0.08) -0.09 (-0.10, -0.07) -0.10 (-0.12, -0.09) -0.10 (-0.11 -0.09)
Sleep duration
(short-sleeper) 0.35 (0.22, 0.51) 0.37 (0.25, 0.53) 0.39 (0.19 0.48) 0.33 (0.21, 0.46)

Gender (male) 0.22 (0.08 0.34) 0.21 (0.07,0.34) 0.17 (0.04 0.31) 0.17 (0.03, 0.31)
σ 0.90 (0.85 0.95) 0.90 (0.85,0.96) 0.91 (0.86 0.96) 0.90 (0.85, 0.96)

Table S1: The posterior medians (and 95% credible intervals) of the projection loading coefficients, the covariate effect
coefficients and the noise standard deviations (σ) of the single-component (d = 1) models, separately fitted based on
the data from the 4 sessions. The results suggest that the FC associated with the sessions are relatively consistent across
the scanning sessions, and also the estimated model parameters are numerically very close to those associated with the
first component C1 of the two-component models, except for the log-variance noise standard deviation σ.
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