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S1. Relationship between the parameters in tangent space (2.7) and in generative model (2.2)

In this section, we examine the relationship between the parameters B̃ in tangent space (2.7)

and B in generative model (2.2). The proposed covariance model is

Yit “ ΓΨ
1
2
i sit `Liεit (S.1)

with latent factors sit „ Np0, Idq and εit „ Np0, Ip´dq, of dimensions d and p ´ d, where we

parametrize Ψ
1
2
i “ exppDiagppBxi ` ziq{2q.

Let us write LiL
J
i “ L̃iΞ̃iL̃

J
i by its eigen-decomposition with a normalized eigenvector

matrix L̃i P Rpˆpp´dq and the diagonal matrix of eigenvalues Ξ̃i P Rpp´dqˆpp´dq. Then we have
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Σi “ ΓΨiΓ
J ` L̃iΞ̃iL̃

J
i , and correspondingly the Euclidean mean, sΣ “ 1

n

řn
i“1 Σi, is

sΣ “
1

n

n
ÿ

i“1

pΓΨiΓ
J ` L̃iΞ̃iL̃

J
i q

“ Γ sΨΓJ `
1

n

n
ÿ

i“1

L̃iΞ̃iL̃
J
i ,

where the second term, 1
n

řn
i“1 L̃iΞ̃iL̃

J
i , can be further expressed through an eigen-decomposition

of the formLΞLJ, for some population levelL P Rpˆpp´dq and a diagonal matrix Ξ P Rpp´dqˆpp´dq.

This implies

sΣ “ Γ sΨΓJ `LΞLJ “ Γaug sΨaugΓJaug

where Γaug “ rΓ,Ls is a pˆp orthonormal matrix and sΨaug is a pˆp diagonal matrix. Accord-

ingly, we can write sΣ´
1
2 “ Γaugp sΨaugq

´ 1
2 ΓJaug, where p sΨaugq

´ 1
2 is a p ˆ p diagonal matrix.

Thus, the d ˆ d matrix ΓJ sΣ´
1
2 Γ “ ΓJΓaugp sΨaugq

´ 1
2 ΓJaugΓ “ ΓJrΓ,Lsp sΨaugq

´ 1
2 rΓ,LsJΓ “

ΓJΓ sΨ´ 1
2 ΓJΓ “ sΨ´ 1

2 is a diagonal matrix. The model (S.1) implies that

varpΓJ sΣ´
1
2Yitq “ ΓJ sΣ´

1
2 Σi

sΣ´
1
2 Γ

“ ΓJ sΣ´
1
2 pΓ exppDiagpBxi ` ziqΓ

J `LiL
J
i q

sΣ´
1
2 Γ

“ ΓJ sΣ´
1
2 Γ exppDiagpBxi ` ziqqΓ

J
sΣ´

1
2 Γ

“ exppDiagplogpΓJ sΣ´
1
2 Γqqq exppDiagpBxi ` ziqq exppDiagplogpΓJ sΣ´

1
2 Γqqq

“ exppDiagplogpΓJ sΣ´1Γqq `DiagpBxi ` ziqq

“ exppDiagplogpΓJ sΣ´1Γq `Bxi ` ziqq
(S.2)

where the third and fourth equalities follow from the diagonality of ΓJ sΣ´
1
2 Γ P Rdˆd and that

any two diagonal matrices can commute. Under tangent-space parametrization (2.7) of the main

manuscript, we use the following log-linear model for the variance of dimension-reduced signals,

varpΓJ sΣ´
1
2Yitq “ exppDiagpB̃xi ` z̃iqq. (S.3)

However, the terms on the right-hand side of (S.3) do not directly correspond to those in (S.2) of

the original data space. This is because a tangent space is a local linear approximation to Sym`d
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where the variance objects varpΓJ sΣ´
1
2Yitq pi “ 1, . . . , nq are located, and the “true values”

of these parametric terms on the right-hand side of (S.3) are affected by this local linearity

assumption. However, for Ψi « sΨ (and thus φ
ĎΨpΨiq « Id), we can approximately identify the

relationship between B and B̃ by matching the parametrization in (S.2) and that in (S.3). For

prior distributions on zi and z̃i centered at 0 (which serve as an identifiability condition), due

to the fact that the term logpΓJ sΣ´1Γq in (S.2) is just a constant with respect to i, only the

intercept column differs between B and B̃. Specifically, the intercept vector β0 P Rd in B under

parametrization (S.2) differs by the diagonal elements of logpΓJ sΣ´1Γq, i.e.,

β0 “ β̃0 ´ diagplogpΓJ sΣ´1Γqq,

in which β̃0 P Rd is the intercept column in B̃ under the tangent-space parametrization (S.3).

S2. Performance of the expected deviance criterion in determining the number of components

In the main manuscript, we considered a WAIC-based criterion to select the number of projection

components d. Specifically, we proposed to pick the dimensionally d of the outcome projection

space in a way that maximizes the expected deviance, by estimating the expected log posterior

ratio, E
”

log ppΓJYit|Ψ̌iq

ppΓJYit|ĎΨq

ı

“ E
“

log ppΓJYit|Ψ̌iq
‰

´E
“

log ppΓJYit| sΨq
‰

, which is approximated by

the WAIC-based formula presented in (2.15) of the main manuscript.

In this section, we report the results from a simulated experiment to demonstrate the per-

formance of this expected deviance criterion. The data were generated following the simulation

scenarios in Section 3.1 of the main manuscript. We vary n P t100, 200, 300u, T “ Ti P t10, 20u

and p P t10, 20u, with d “ 2 number of “correct” components. We consider the both cases where

the models are correctly specified, and where the models are misspecified in which there are no

common eigenvectors Γ related to covariates across subjects.

For each scenario, we ran 50 simulation replications and reported the proportion (computed

based on the 50 simulation runs) that the estimated number of components is the same as the
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“truth” (d “ 2). For each simulation run with different d P t1, 2, 3, 4u values, we computed the

criterion (2.15) using the posterior MCMC samples, and selected d that minimizes the criterion.

In Table S.1 below, we display the proportions of the cases where the correct number of

components are identified out of 50 simulation runs. In all scenarios, the results consistently

show the proportions very close 1 pě 0.86q, suggesting the reliability of this expected deviance

criterion in choosing the number of components.

Correctly specified Model misspecified

p “ 10 p “ 20 p “ 10 p “ 20

n “ 100 T “ 10 0.94 0.94 0.92 0.98
T “ 20 0.86 0.98 0.94 0.94

n “ 200 T “ 10 1.00 1.00 0.94 0.98
T “ 20 1.00 1.00 1.00 1.00

n “ 300 T “ 10 1.00 1.00 1.00 0.98
T “ 20 0.96 1.00 0.98 0.98

Table S.1. The proportion of the cases for identifying the correct number of components out of 50
simulation replications, for different simulation scenarios with n P t100, 200, 300u, T P t10, 20u and
p P t10, 20u, under both correctly specified and misspecified model conditions.

Alternatively, the number of components d can be determined based on a metric that measures

the level of “deviation from diagonality” (DfD) of the sample version of the dimension-reduced

covariance Ψi, as in Zhao and others (2021). If this sample version, ΓJ pΣiΓ “ pΨi, where pΣi “

1
Ti

řTi

t“1 YitY
J
it , deviates from the diagonality assumed in the model, then the following quantity

log DfDpt pΨiu
n
i“1q :“ 1

řn
i“1 Ti

řn
i“1 Ti

´

log|diagp pΨiq|´ log| pΨi|
¯

, tends to deviate from 0, where

diagp pΨiq is a dˆ d diagonal matrix with its diagonal elements given by the diagonal elements of

pΨi, and the determinants |diagp pΨiq| and | pΨi| correspond to the determinants of the dˆd matrices

diagp pΨiq and pΨi, respectively. From Hadamard’s inequality, log DfDpt pΨiu
n
i“1q ě 0 (Zhao and

others, 2021; Flury and Gautschi, 1986), and the equality occurs if the matrix pΨi is perfectly

diagonal. The requirement for pΨi to be diagonal may become more stringent as the dimensionality

d increases (Zhao and others, 2021), and thus, with a too large number of components d, the

quantity log DfDpt pΨiu
n
i“1q tends to deviate from 0. We can utilize posterior MCMC samples
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to compute the posterior mean, Erlog DfDpt pΨiu
n
i“1q|Ds, by using the HMC sampler outputs on

pΨ
psq
i “ ΓpsqJ pΣiΓ

psq for each subject i pi “ 1, . . . , nq, where Γpsq is the sth posterior sampler

output for Γ from the Markov chain. Heuristically, we can increase the projection dimension

from 1 to some reasonable number, ďpď pq, and choose a suitable number right before a large

jump in the metric, or identify an appropriate number by finding the largest d such that the

metric Erlog DfDpt pΨiu
n
i“1q|Ds is less than some threshold, i.e., choose the largest d such that

Erlog DfDpt pΨiu
n
i“1q|Ds ď c for some cutoff value c. However, the choice of c is less objective

compared to the WAIC criterion discussed in the main manuscript, and we did not pursue this

approach to optimize the rank of the model.

S3. Simulation illustration: p “ 10 cases

The model parameter estimation performance for p “ 10 case is provided in Figure S.1.

Fig. S.1. The model parameter estimation performance for p “ 10 case, for the loading coefficient vectors

γpkq pk “ 1, 2q, the elements of the random effect covariance matrix Ω, the regression coefficients βpkq pk “
1, 2q, and the intercept β0, averaged across 50 simulation replications, with varying n P t100, 200, 300, 400u
and T P t10, 20, 30u.
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S4. Simulation illustration: When the model is misspecified

In this section, we report the estimation performance for p “ 10 in terms of the absolute cosine

similarity and the RMSE, when the model is misspecified: 1) when no random effect component

zi is considered in the model estimation, which is reported in Figure S.2; and 2) when there are no

common “signal” (covariate relevant) eigenvectors across subjects, which is reported in Figure S.3.

In addition, we report these misspecified cases’ 95% credible interval coverage proportions in

Table S.2.

When no random effect is used (Figure S.2), while the estimation performance results in

terms of the absolute cosine similarity and the RMSE are comparable with those of the correctly-

specified cases, the actual coverage proportions of the 95% credible intervals tend to deviate

from the nominal level (the left columns in Table S.2), particularly for the regression coefficients

βpkq, underestimating the uncertainties. When there is no common “signal” eigenvectors across

subjects (Figure S.3), there was an added bias in the estimation of βpkq, and the coverage tended

to be smaller than the nominal level (the right columns in Table S.2).
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Fig. S.2. The cases where no random effect component zi is considered in the model estimation. Model

parameter estimation performance for the loading coefficient vectors γpkq pk “ 1, 2q, the regression
coefficients βpkq pk “ 1, 2q, and the intercept β0, averaged across 50 simulation replications, with varying
n P t100, 200, 300, 400u and T P t10, 20, 30u.
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Fig. S.3. The cases where there are no common “signal” eigenvectors across subjects. Model parameter

estimation performance for the loading coefficient vectors γpkq pk “ 1, 2q, the elements of the random
effect covariance matrix Ω, the regression coefficients βpkq pk “ 1, 2q, and the intercept β0, averaged
across 50 simulation replications, with varying n P t100, 200, 300, 400u and T P t10, 20, 30u.

No random effect zi in the model No common eigenvectors Γ

n T γp1q γp2q βp1q βp2q Ω γp1q γp2q βp1q βp2q Ω

100 10 0.90 0.90 0.80 0.76 NA 0.81 0.88 0.88 0.83 0.91
20 0.86 0.86 0.68 0.60 NA 0.83 0.85 0.87 0.78 0.94
30 0.89 0.88 0.59 0.57 NA 0.75 0.80 0.84 0.69 0.87

200 10 0.89 0.85 0.76 0.70 NA 0.85 0.88 0.86 0.74 0.83
20 0.92 0.91 0.70 0.60 NA 0.81 0.85 0.82 0.67 0.77
30 0.90 0.92 0.62 0.57 NA 0.77 0.81 0.81 0.62 0.75

300 10 0.88 0.92 0.73 0.78 NA 0.89 0.87 0.84 0.64 0.67
20 0.85 0.89 0.62 0.60 NA 0.85 0.90 0.82 0.54 0.78
30 0.90 0.93 0.58 0.54 NA 0.79 0.83 0.72 0.52 0.75

400 10 0.91 0.93 0.78 0.74 NA 0.86 0.91 0.78 0.54 0.71
20 0.93 0.92 0.71 0.68 NA 0.86 0.88 0.76 0.43 0.74
30 0.92 0.93 0.60 0.56 NA 0.84 0.87 0.78 0.36 0.81

Table S.2. The proportion of time that 95% posterior credible intervals contain the true values of the

projection loading vectors γpkq pk “ 1, 2q, regression coefficients βpkq pk “ 1, 2q, and elements of Ω,
averaged across 50 simulation replications, with varying n P t100, 200, 300, 400u and T P t10, 20, 30u.
Coverage computed for each entry, then averaged within components (γpkq, βpkq and Ω) and across the
simulation replications (rounded to two significant digits).
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S5. Application: Estimated model parameters

The estimated model parameters (posterior median and 95% credible intervals) estimated on the

first session of the HCP dataset are displayed in Figures S.4, S.5 and S.6 for Γ, B and Ω,

respectively.
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Fig. S.4. Credible intervals of the projection loading coefficients γp1q, γp2q, γp3q and γp4q, i.e., those from

Γ “ rγp1q;γp2q;γp3q;γp4qs P R15ˆ4 associated with the four outcome components C1, C2, C3 and C4,
identified to be associated with covariates.
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C4 Sleep x Gender Interaction

C4 Gender (male)

C4 Sleep duration (short)

C3 Sleep x Gender Interaction

C3 Gender (male)

C3 Sleep duration (short)

C2 Sleep x Gender Interaction

C2 Gender (male)
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Regression coefficients (B)

Fig. S.5. The posterior medians and 95% credible intervals of the regression coefficients βp1q, βp2q, βp3q

and βp4q, associated with the four estimated components C1, C2, C3 and C4.
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Fig. S.6. The posterior medians and 95% credible intervals of the random effect covariance components

(Ω P R4ˆ4) (the 4 diagonal and 6 lower triangular elements) of the estimated projected signals ΓJYit P R4,
that model the residual covariances of the estimated projected signals not captured by the covariates xi.
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S6. Application: Estimated model parameters from the four sessions of HCP

Besides focusing on the first session of the HCP data, in Table S.3 below, we report the mod-

els separately fitted for each of the 4 sessions of HCP. We report the posterior means (and

95% credible intervals) for the SleepDuration, Gender and their interaction regression coeffi-

cients (βp1q “ pβ
p1q
1 , β

p1q
2 , β

p1q
3 qJ, βp2q “ pβ

p2q
1 , β

p2q
2 , β

p2q
3 qJ, βp3q “ pβ

p3q
1 , β

p3q
2 , β

p3q
3 qJ and βp4q “

pβ
p4q
1 , β

p4q
2 , β

p4q
3 qJ) and the random effect variances (ω11, ω22, ω33 and ω44), associated with the 4

projection components (C1, C2, C3 and C4), where the models are separately fitted for each of

the 4 sessions of HCP. The estimated model parameters in Table S.3 suggest that these regression

parameters exhibits a high level of consistency across all four scanning sessions.

For each estimated (posterior mean) projection loading coefficient γ̂pkq pk “ 1, . . . , 4q, we

compute logpvarpγ̂pkqJYitqq “ logpγ̂pkqJ pΣiγ̂
pkqq pi “ 1, . . . , nq, where pΣi “

1
Ti

řTi

t“1 YitY
J
it . In

Table S.3, we report the sample mean of the log-variances, i.e., 1
n

řn
i“1 logpγ̂pkqJ pΣiγ̂

pkqq (and the

sample standard deviation), computed for each of the 4 projection components (C1, C2, C3 and

C4) and for each of the 4 sessions.

Furthermore, for each (the kth) projection component (C1, C2, C3 and C4), we compute

the intra-cluster correlation (ICC) coefficient value of the log-variance logpvarpγ̂pkqJYitqq pi “

1, . . . , nq across the 4 sessions. This ICC quantifies the fraction of the variability in log-variance

attributed to between-subject differences, relative to the combined variability from both between-

subject and between-session differences.

In Table S.3, the ICC values are 0.84, 0.72, 0.84 and 0.83, for the 4 identified network com-

ponents, indicating that the functional connectivity associated with the 4 identified components

exhibits a relatively high level of consistency across all four scanning sessions.
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Session 1 Session 2 Session 3 Session 4 ICC

C1 Mean (SD) of logpvarpγ̂p1qJYitqq 8.70 (0.98) 8.41 (0.99) 8.48 (0.99) 8.74 (1.01) 0.844

SleepDuration β
p1q
1 0.20 (0.00 0.40) 0.27 (0.05 0.50) 0.32 (0.11 0.55) 0.21 (-0.04 0.43)

Gender β
p1q
2 -0.04 (-0.23 0.14) 0.27 (0.08 0.46) 0.23 (0.05 0.42) 0.00 (-0.19 0.19)

Interaction β
p1q
3 0.25 (-0.05 0.57) 0.11 (-0.22 0.42) 0.15 (-0.21 0.43) 0.27 (-0.06 0.62)

Random-effect variance ω11 1.01 (0.91 1.11) 1.00 (0.89 1.12) 0.98 (0.87 1.09) 1.04 (0.94 1.16)

C2 Mean (SD) of logpvarpγ̂p2qJYitqq 7.11 (0.60) 7.49 (0.59) 7.49 (0.64) 7.33 (0.61) 0.721

SleepDuration β
p2q
1 0.13 (0.00 0.26) 0.15 (0.03 0.28) 0.17 (0.04 0.31) 0.24 (0.10 0.36)

Gender β
p2q
2 0.03 (-0.08 0.14) 0.13 (0.02 0.23) 0.06 (-0.05 0.18) 0.08 ( -0.05 0.21)

Interaction β
p2q
3 0.06 (-0.12 0.25) 0.00 (-0.18 0.19) 0.08 (-0.13 0.27) -0.14 (-0.34 0.05)

Random-effect variance ω22 0.35 (0.31 0.39) 0.31 (0.27 0.35) 0.35 (0.31 0.39) 0.35 (0.31 0.40)

C3 Mean (SD) of logpvarpγ̂p3qJYitqq 8.85 (0.86) 8.58 (0.89) 8.59 (0.86) 8.76 (0.81) 0.843

SleepDuration β
p3q
1 0.24 (0.07 0.42) 0.23 (0.04 0.42) 0.23 (0.03 0.44) 0.10 (-0.10 0.28)

Gender β
p3q
2 0.04 (-0.12 0.20) 0.15 (-0.01 0.31) 0.19 (0.04 0.35) 0.06 (-0.10 0.22)

Interaction β
p3q
3 0.01 (-0.26 0.28) 0.03 (-0.26 0.32) 0.03 (-0.27 0.31) 0.13 (-0.12 0.40)

Random-effect variance ω33 0.73 (0.66 0.82) 0.77 (0.68 0.87) 0.72 (0.65 0.81) 0.63 (0.56 0.70)

C4 Mean (SD) of logpvarpγ̂p4qJYitqq 8.28 (0.70) 8.24 (0.66) 8.33 (0.70) 8.26 (0.74) 0.833

SleepDuration β̂
p4q
1 0.11 (-0.03 0.25) 0.19 (0.06 0.33) 0.18 (0.04 0.34) 0.23 (0.07 0.39)

Gender β
p4q
2 0.02 (-0.11 0.14) 0.14 (0.02 0.25) 0.13 (-0.01 0.26) 0.09 (-0.05 0.23)

Interaction β
p4q
3 0.17 (-0.02 0.37) -0.05 (-0.25 0.16) 0.05 (-0.18 0.26) 0.05 (-0.18 0.27)

Random-effect variance ω44 0.43 (0.38 0.48) 0.37 (0.32 0.41) 0.40 (0.36 0.45) 0.50 (0.45 0.57)

Table S.3. The posterior means (and 95% credible intervals) of the regression coefficients and the random

effect variance components pωkkq, along with the log-variance of the projected signals (logpvarpγ̂pkqJYitqq),
for each of the 4 estimated projection components and for each of the 4 sessions of HCP.

S7. Description of the Contrast Map ΓpDiagpBδqqΓJ

We can think of a “contrast” map as the changes in the log covariance due to alterations in

certain variables (i.e., covariates). To understand the impact of these changes on the covariance,

we first focus on the “variance ratio” (VR). This helps us grasp how the variance of the signals

is expected to change due to the changes in the covariates represented by δ.

Estimating the probabilistic model (S.1) allows us to identify eigenvectors Γ relevant to covari-

ates, simplifying our analysis of the covariates-covariance association, particularly when the global

log transformation is involved in modeling for tangent-space mapping. Having identified relevant

eigenvectors Γ that align with the covariates’ impact directions, the global log transformation

maintains their orientation associated with covariate effects, thus preserving the interpretability

of pairwise connectivity differences in the log contrast matrix given a δ-change in covariates,

upon regression modeling in tangent space.
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More specifically, each pair of the off diagonal elements of the log contrast matrix Γ pDiagpBδqqΓJ

(see below) maintain its interpretability as the corresponding pairwise connectivity difference due

to the δ contrast in the covariates (but on the log scale). If we assume covariate dependent eigen-

vectors, then the global log transformation changes the covariate’s impact directions, leading to

an interpretational challenge.

Under model (2.1) of the main manuscript, we have a covariance decomposition

Σi “ Γ exppDiagpBxi ` ziqqΓ
J ` L̃iΞ̃iL̃

J
i ,

where LiL
J
i is eigen-decomposed into L̃iΞ̃iL̃

J
i . Now we consider the impact of a δ-change in

covariates on the covariance on the log scale,

log pΣi,δq ´ log pΣiq

“ log
´

Γ exppDiagpBpxi ` δq ` ziqqΓ
J ` L̃iΞ̃iL̃

J
i

¯

´ log
´

Γ exppDiagpBxi ` ziqqΓ
J ` L̃iΞ̃iL̃

J
i

¯

“ Γ log pexppDiagpBpxi ` δq ` ziqqqΓ
J ` L̃i logpΞ̃iqL̃

J
i ´

´

Γ log pexppDiagpBxi ` ziqqqΓ
J ` L̃i logpΞ̃iqL̃

J
i

¯

“ Γ pDiagpBpxi ` δq ` ziqqΓ
J ´ Γ pDiagpBxi ` ziqqΓ

J

“ Γ pDiagpBδqqΓJ.
(S.4)

Note, the logarithm of SPD matrices Σi,δ and Σi, are taken relative to a chosen reference point,

which defines the tangent space, and the choice of tangent space may impact the results. However,

when we subtract the logarithms of two matrices, the reference point no longer affects the result

because the subtraction operation is performed in the tangent space itself. Therefore, the choice

of the reference point for the Log map does not impact the interpretation of log pΣi,δq ´ log pΣiq

in (S.4)

S8. Application: Similarity between the components identified by CAP and Bayesian CAP

In this section, we display the cosine similarity (similarity between -1 and 1, with 0 indicating

orthogonal) of the estimated projection directions from CAP (Zhao and others, 2021) (in their
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first four leading components) and those from the proposed method. Table S.4 below shows

positive association for each projection direction with the similarity at least 0.4. In Table S.4,

we also report the CAP regression coefficients (with 95% bootstrap confidence intervals) for each

projected outcome component.

Similarity with BayesianCAP CAP coefficient (95% bootstrap CI)

C1 C2 C3 C4 SleepDuration Gender Interaction

CAP Component 1 0.34 0.70 -0.11 0.50 0.18 (-0.02 0.37) -0.02 (-0.19 0.14) 0.26 (-0.03 0.56)
Component 2 0.71 -0.50 -0.25 0.43 0.16 (-0.05 0.36 ) -0.07 (-0.25 0.12) 0.23 (-0.07 0.52)
Component 3 0.17 -0.05 0.42 -0.24 0.23 (0.09 0.36) 0.14 (0.03 0.26) 0.02 (-0.17 0.20)
Component 4 0.47 0.02 0.41 -0.04 0.16 (-0.02 0.34) 0.01 (-0.15 0.15) 0.19 (-0.04 0.43)

Table S.4. Cosine similarity between the components identified by CAP and Bayesian CAP (in their first
four leading components), and CAP regression coefficients (and 95% bootstrap confidence intervals) for
each of the CAP projection components.

S9. Interpretation of the projection loading coefficients

In this section, we discuss how the projection loading coefficients γpkq can be interpreted in

relation to the corresponding regression coefficient βpkq, as primarily considered in Zhao and

others (2021).

For subject i with subject-specific pairwise correlation matrix Σi “ rσjj1,is P Sym`p , the

log-variance of the (kth) projection component is

log
`

γpkqJΣiγ
pkq

˘

“ log
`

1`
p
ÿ

j‰j1

γ
pkq
j γ

pkq
j1 σjj1,i

˘

“ β
pkq
0 ` xiβ

pkq
1 ` z

pkq
i (S.5)

where the kth loading direction is γpkq “ pγ
pkq
1 , . . . , γ

pkq
j , . . . , γ

pkq
j1 , . . . , γ

pkq
p qJ P Rp (subject to

‖γpkq‖ “ 1). Model (S.5) indicates that, for any region pair pj, j1q, the signs of the corresponding

loading coefficient product γ
pkq
j γ

pkq
j1 and of the regression coefficient β

pkq
1 determine the direction of

association between the covariate xi and the pairwise correlation σjj1,i. In (S.5), for the simplicity

in illustration, Σi is assumed to be a correlation matrix, however, the same interpretation in terms

of the direction of association is applicable to any covariance matrix Σi P Sym`p .

First let us consider the case β
pkq
1 ą 0; if two brain regions (j and j1) have the same loading
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signs, the model suggests a positive association between the correlation σjj1,i and the covariate xi,

holding all the other components constant; on the other hand, if the brain regions have opposite

loading signs, the model suggests a negative association between the correlation σjj1,i and the

covariate xi, holding all the other components constant.

Now let us consider the case β
pkq
1 ă 0; if two brain regions (j and j1) have the same loading

signs, the model suggests a negative association between the correlation σjj1,i and the covariate xi,

holding all the other components constant; on the other hand, if the brain regions have opposite

loading signs, the model suggests a positive association between the correlation σjj1,i and the

covariate xi, holding all the other components constant.

S10. Application: Results from element-wise regression

One conventional method for analyzing group ICA data involves initially computing subject-

level Pearson correlations between the ICs, which are then Fisher z-transformed. This process is

performed on pppp´1q{2 “q 105 pairs of correlations (calculated from 15 ICs), while the element-

wise log transformation was conducted on the p “ 15 diagonal elements. A total of 120 element-

wise linear regressions were then conducted on SleepDuration, Gender and their interaction,

and p-values are corrected for multiplicity using the Benjamini-Hochberg (BH) (Benjamini and

Hochberg, 1995) procedure to control the false discovery rate (FDR) at 0.05. The patterns of the

connectivity differences from this mass-univariate approach are presented in Figure S.7 below.

The patterns are similar with the results from Bayesian CAP in Figure 4 of the main manuscript.

However, compared to Bayesian CAP, far fewer statistically significant elements were identified

(13 vs. 77, out of 480 elements).
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Fig. S.7. Elementwise regression. The statistical significance map (the left column panels) and the point
estimate of the connectivity elements from mass-univariate regression with the log-transformed variance
(diagonal) elements and Fisher z-transformed correlation (off-diagonal) elements, for each of the four
covariate contrasts δ, derived from the SleepDuration ˆ Gender interaction.
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